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Abstract: The mathematical foundation of many real-world problems can be quite deep. Such a situation
arises inthe study of the flow and deformation (rheology) of viscoelastic materials such as naturally
occurring and synthetic polymers. In order to advance polymer science and the efficient manufacture
of synthetic polymers, it is necessary to recover information about the molecular structure within such
materials. For the recovery of such information about a specific polymer, it is necessary to determine its
relaxation modulusG(t) and its creep modulusJ(t). They correspond to the kernels of the Boltzmann
causal integral equation models of stress relaxation and strain accumulation experiments performed on
viscoelastic solids and fluids. In order to guarantee that the structure of such models is consistent with
theconservation of energy, both the relaxation modulus and the derivative of the creep modulus must be
completely monotone (CM) functions.

As well as the exponential functionexp(−αt) and Dirichlet series
∞
∑

n=1

ai exp(−λi), 0 < λ1 < λ2 < · · · ,

with non-negative coefficientsai, the set of CM functions includes many interesting examples such as the
subclass

exp(−θ̇), θ̇ =
dθ

dt
, θ(0) = 0, θ(t) ∈ CM.

An important practical example in this subclass are the Kohlrausch (Williams Watts; stretched exponen-
tial) functions

exp(−αtβ), 0 < β < 1.

Such functions arise in a broad spectrum of applications and have important mathematical properties
Anderssen et al. (2004) (e.g. the Weibull cumulative probability distribution).

Because of their importance in applications, there is a need to have accurate approximations for it, so that
its properties can be approximated. For example, even though the relaxation and creep moduliiG(t) and
J(t) of linear viscoelasticity are known to satisfy the interconversion equation

∫ t

0

G(t− τ)J(τ)dτ =

∫ t

0

J(t− τ)G(τ)dτ = t,

the specific form ofJ(t) is unknown whenG(t) is a Kohlrausch function. Theoretically, it is known that
J(t) must be a strictly monotonically increasing function.

Recently, by taking advantage of the Pollard (1946) result that a Kohlrausch function is the Laplace trans-
form of a known stable distribution, Anderssen and Loy (2011) have shown how uniformly convergent
sums of exponentials approximations for the Kohlrausch function can be constructed. In this paper, the
derivation, significance and validation of such approximations are examined.
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1 COMPLETE MONOTONICITY AND KOHLRAUSCH FUNCTIONS

A C∞[0,∞)) function f : (0,∞) → [0,∞) is completely monotone(CM ) if it satisfies the rather
innocuous conditions

(−1)n d
nf

dxn
≥ 0, n = 0, 1, 2, . . . . (1)

Widder (1946) gives an alternative definition: aC∞[0,∞)) functionf : [0,∞) → [0,∞) is completely
monotone if it satisfies the condition (1) and is continuous at0. However, this aspect will not be pursued
here. The importance of this family of functions is the following result of Bernstein (1928) that:a function
f : (0,∞) → [0,∞) is CM if and only if there is a positive locally finite Borel measureµ on (0,∞) such
that

f(s) =

∫

∞

0

exp(−st)dµ(t), s > 0. (2)

TheCM functions arise as the fundamental objects in a wide range of applications including

(i) The diesel spray problem. (Grinshpan et al. (2000)) Modelling the dynamics of diesel spray is
fundamental to improving on current designs for diesel engines and on the efficency with which the
fuel is burnt when it explodes sponstaneously under compression. The overall details are highly
complex. However, insight is gain through the identification of simplifications which encapsulate
the essential details. In the current situation, the simplification which has proved seminal is the
assumption that the logarithmic derivative of thediesel parameter functionbehaves like aCM
function.

(ii) The causal modelling of linear viscoelasticity. (Anderssen et al. (2008a,b)) The stress-strain
measurements of linear viscoelastic materials take two forms:

(a) The measured stressσ(t) in response to an applied strain rateγ̇(t) which is modelled causally
as

σ(t) =

∫ t

−∞

G(t− τ)γ̇(τ)dτ, G(t) := the relaxation modulus.

(a) The measured strainγ(t) in response to an applied stress rateσ̇(t) which is modelled causally
as

γ(t) =

∫ t

−∞

J(t− τ)σ̇(τ)dτ, J(t) := the retardation (creep) modulus.

In order to ensure that conservation of energy is guaranteed, it is usually assumed that the relaxation
modulusG and the derivativeJ̇ of the retardation modulusJ areCM functions.

(iii) Dielectric susceptability. The electric susceptibilityχE measures how easily a dielectric material
polarizes in response to an applied electric field. It, in turn, can be used to determine other electric
properties of a material such as permittivity. The measurement process is causal and takes a form
similar to that for the causal models of viscoelastic materials.

As well as the exponential functionA exp(−αt), it is common practice to choose the Kohlrausch func-
tion A exp(−αtβ), 0 < β < 1 as the model of the underlyingCM behaviour. The popularity of the
Kohlrausch function relates to the facts that

• it has a small (three) parameter representation,

• like for the Gompertz model (Osborne and Anderssen (2003)), the associated parameter identifica-
tion forA, α andβ can be achieved using a double logarithmic transformation,

y(t) = A exp(−αtβ) ⇔ A = y(0) ⇔ ln(− ln(y(t)/y(0)) = α+ βt,
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• it yields a more comprehensive representation ofCM behaviour that can be achived with a small
number of exponential functions, and

• for smallβ ∼ 0, it yields a good model for a switching process.

Further details about Kohlrausch functions can be found in Lindsey and Patterson (1980), Anderssen et al.
(2004) and Macdonald (2006).

2 THE SUMS OF EXPONENTIALS APPROXIMATIONS

There are situations where it would be useful if the Laplace transform of the Kohlrausch function was
known analytically. Such a situation arizes in linear viscoelasticity. If the relaxation modulusG is as-
sumed to be a Kohlrausch function, then, in order to determine the correspond structure for the retardation
modulusJ , it is necessary to solve the interconversion equation (Anderssen et al. (2008a,b))

∫ t

0

G(t− τ)J(τ)dτ = t.

Unfortunately, the Laplace transform of a Kohlrausch function is unknown in an explicit sense, though
implicit definitions have been derived.

The alternative strategy is to approximate the Kohlrausch functions by a sum of functions for which
the Laplace transform is known. The obvious choice is the exponential functions, for which there is a
comprehensive literature about how to solve the interconversion equation whenG is given as a sum of
exponential functions (Nikonov et al. (2005)).

Using non-constructive arguments, based on the classical results of Müntz, Liu (1999, 2001b) established
conditions under which a completely monotone function could be approximated by a Dirichlet series with
positive coefficients, and exploited this result to derive estimates of the relaxation spectrum of a linear
viscoelastic material from creep measurements Liu (1999, 2001a). Among other things, he proved “if
a function can be approximated arbitrarily closely by Dirichlet series with nonnegative coefficients in
supremum norm orLp-norm,1 ≤ p <∞, then it must be completely monotonic”.

As well as being important from a theoretical perspective, Liu’s results open up the question about how
such sums of exponentials should be constructed. Because of its practical importance in a wide range
of applications (Macdonald (2006); Anderssen et al. (2004); Macdonald (1997); Lindsey and Patterson
(1980)), the completely monotone Kohlrausch function represents a key candidate to examine. The start-
ing point is Pollard’s 1946 rigorous proof Pollard (1946) of the following Laplace transform identity for
the Kohlrausch function

exp(−tβ) =

∫

∞

0

φ(β, p) exp(−pt)dp, 0 < β ≤ 1, t ≥ 0, (3)

where

φ(β, p) =
1

π

∫

∞

0

exp(−pu)ψ(u)du, ψ(u) = exp(−uβ cos(πβ)) sin(uβ sin(πβ)). (4)

The functionφ(β, p), a stable distribution in the sense of Levy (Montroll and Bendler (1984); Feller
(1966)), has a variety of useful summation and integral representations (Pollard (1946); Anderssen et al.
(2004)). In particular, it is non-negative and has the following properties:

• For allβ,
∫

∞

0

φ(β, p) = 1.

• For eachβ, there exists a uniquêpβ such that

φ(β, p̂β) = max
p

φ(β, p) = Kβ .
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• It follows from the unimodality ofφ(β, p) that, for a fixedβ, there exists a uniquepβ such that
φ(β, p) is strictly monotone decreasing forp > pβ .

It is clear from the structure of the right hand side of equation (3), because it already contains the expo-
nential function as part of the integrand, some approximate utilization of the integral mean value theorem
would generate sums of exponentials approximations. This is the strategy adopted and exploited by An-
derssen and Loy (2011). They used the integral mean value theorem to construct a sum of exponentials
approximation to the Kohlrausch function and to prove its uniform convergence. In this way, they derived
the following family of approximations

Take a positive intergerN > 1. The identity (3) can be rewritten in the following compartmentalized
form

exp(−tβ) = Υ0 +

N
∑

i=1

∫ pi+1

pi

φ(β, p) exp(−pt)dp+ Υ∞, (5)

where

0 < p1 = p#(β) < p2 < . . . < pN < pN+1 = p##(β) <∞,

pi+1 − pi =
(p##(β) − p#(β))

N
, i = 1, 2, . . . , N,

and, for a givenǫ > 0, p#(β) andp##(β) are chosen so that

Υ0 =

∫ p#(β)

0

φ(β, p) exp(−pt)dp < ǫ,

Υ∞ =

∫

∞

p##(β)

φ(β, p) exp(−pt)dp < ǫ.

Becauseφ(β, p) is a non-negative function, the integral mean value theorem can be applied to the indi-
vidual integrals in the representation (5) to yield

exp(−tβ) ≈
N

∑

i=1

exp(−p∗(i, t)t)
∫ pi+1

pi

φ(β, p)dp, (6)

=
N

∑

i=1

a∗i exp(−p∗(i, t)t),

wherep∗(i, t), with pi < p∗(i, t) < pi+1, is the corresponding mean value ofp, and

a∗i =

∫ pi+1

pi

φ(β, p)dp, i = 1, 2, . . . , N.

Using the following approximations for the mean valuesp∗(i, t)

p∗i =
pi + pi+1

2
, i = 1, 2, . . . , N,

equation (6) becomes

exp(−tβ) ≈
N

∑

i=1

a∗i exp(−p∗i t). (7)
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Figure 1: A plot in green of the Kohlrausch functionexp(−t1/2) and the approximation generated for
n = 36 andN = 40.

3 IMPLEMENTATION

For the approximations (7), the key step is the evaluation of the coefficientsa∗i . A change in the order of
the integration in the formula fora∗i and a little algebra yields

a∗i = Ψ(pi) − Ψ(pi+1), Ψ(p) =
1

π

∫

∞

0

ψ(u)

u
exp(−pu)du. (8)

With 0 < β < 1, the singularity inΨ(p) is integrable.

Because of the oscillatory termsin(uβ sin(πβ)) in ψ(u), accurate evaluation of thea∗i must involve
the careful cancellation of the positive and negative contributions. The extenuating factor is the decay
associated with theexp(−pu) term, which implies that, for a givenp, there exists āu such that the value
of

∫

∞

ū

ψ(u)

u
exp(−pu)du

is negligible.

However, in the special case whenβ = 1/2, it can be shown (e.g. using Maple) that

Ψ(p) = erf(
1

2
√
p
),

and, hence,that the correspondinga∗i can be evaluated as

a∗i =
2√
π

∫ θi

θi+1

exp(−t2)dt, θi =
1

2
√
pi
,
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which illustrates the decay of thea∗i asi increases. In fact,

0 < a∗i ≤ 1

8π3/2p2
i

exp

(

− 1

4pi+1

)

≤ 1

45p2
i

.

An illustrative plot of the situation is given in the figure where, fori = 1, 2, . . . , N , the intervals
(pi+1 − pi) = i/n with n = 36 andN = 40. It illustrates, consistent with the theory, how the sum of
exponentials approximations approachexp(−x1/2) from below.

4 CONCLUSIONS

The importance of the Kohlrausch (stretched exponential) decay behaviour in practical situations has been
acknowledged by various authors including Anderssen et al. (2004); Sabelko et al. (1999); Hou et al.
(2011). Though they draw attention to the fact, citing Pollard (1946) as the source, that a Kohlrausch
decay can be reinterpreted as a system of exponential decays, the possibility of using Pollard’s result to
construct approximation to the Kohlrausch function has not been examined.

In Karmakar and Samanta (2003), this mentioned reinterpretation is used to justify the approximation
of Kohlrausch function like data by a sum of two or three exponentials. The authors found that the
fluorescence relaxation (decay) behaviour of some room temperature ionic liquids can be approximated
by the sum of two exponentials. Such results can be viewed as indirect validation of the approximability
of a Kohlrausch function by a not too large number of terms of a Dirichlet series representation.

Nevertheless, as is implicit in the figure, the number of exponentials required to yield an accurate recon-
struction of Kohlrausch function behaviour is likely to be quite high.

REFERENCES

Anderssen, R. S., A. R. Davies, and F. R. de Hoog (2008a). On the sensitivity of interconversion between
relaxation and creep.Rheologica Acta 47, 159–167.

Anderssen, R. S., A. R. Davies, and F. R. de Hoog (2008b). On the Volterra integral equation relating
creep and relaxation.Inverse Problems 24, 035009 (p. 13).

Anderssen, R. S., S. Husain, and R. J. Loy (2004). The Kohlrausch function: properties and applications.
ANZIAM J (E) 45, C800–C816.

Anderssen, R. S. and R. J. Loy (2011). Sums of exponentials representations for the Kohlrausch function.
Preprint.

Bernstein, S. N. (1928). Sur les fonctions absolument monotones.Acta Mathematica 52, 1–66.

Feller, W. (1966).An Introduction to Probability Theory and its Applications, Volume II. John Wiley &
Sons, New York.

Grinshpan, A., M. Ismail, and D. Milligan (2000). Complete monotonicity and diesel fuel spray.Math.
Intel. 22, 43–53.

Hou, Z., D. Fu, and Q.-H. Qin (2011). An exponential law for stretching-relaxation properties of bone
piezovoltages.Inter. J. Solids Structures 48, 603–610.

Karmakar, R. and A. Samanta (2003). Dynamics of solvation of the fluorescent state of some
electron donor-acceptor molecules in room temperature ionic liquids, [BMIM][(CF3SO2)(2)N] and
[EMIM][(CF3SO2)(2)N]. J. Phys. Chem. A 107, 7340–7346.

Lindsey, C. and G. Patterson (1980). Detailed comparison of the Williams-Watts and Cole-Davidson
functions.J. Chem. Phys. 73, 3348–3357.

Liu, Y. (1999). Calculation of discrete relaxation modulus and creep compliance.Rheol. Acta 38, 357–
364.

268



R. S. Anderssen, M. P. Edwards, S. A. Husain and R. J. Loy, Approximating theKohlrausch Function

Liu, Y. (2001a). A direct method for obtaining discrete relaxation spectra from creep data.Rheol. Acta 40,
256–260.

Liu, Y. (2001b). Approximation by Dirichlet series with nonnegative coefficients.J. Approx. Theory 112,
226–234.

Macdonald, J. (1997). Accurate fitting of emittance spectroscopy frequency-response data using the
stretched exponential model.J. Non-Crystal. Solids 212, 95–116.

Macdonald, J. (2006). Surprising conductive- and dielectric-system dispersion differences and similarities
for two Kohlrausch-related relaxation-time distributions.J. Phys-Condensed Matter 18, 629–644.

Montroll, E. and J. Bendler (1984). On Levy (or Stable) distributions and the Williams-Watts model of
dielectric-relaxation.J. Stat. Phys. 34, 129–162.

Nikonov, A., A. R. Davies, and I. Emri (2005). The determination of creep and relaxation functions from
a single experiment.J. Rheol. 49, 1193–1211.

Osborne, B. and R. Anderssen (2003). Single-kernel characterization principles and applications.Cereal
Chem. 80, 613–622.

Pollard, H. (1946). The representation ofexp(xλ) as a Laplace integral.Bull. Amer. Math. Soc. 52,
908–910.

Sabelko, J., J. Ervin, and M. Gruebele (1999). Observation of strange kinetics in protein folding.
PNAS 96, 6031–6036.

Widder, D. V. (1946).The Laplace Transform. Princeton University Press, Princeton.

269




