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Abstract: The elementary processes common to all electrochemical systems are electrical conduction and
the transfer of charge across the interface between two different phases. In many practically-important
situations, the chemical species generated by these interfacial charge transfers can subsequently react to
form poorly-conducting or insulating substances, thereby increasing the resistance and decreasing the
amount of electrical energy available for reaction. This self-limiting phenomenon is commonly referred
to as passivation, and is of great importance in the study of corrosion and the behavior of porous battery
electrodes.

Electrochemical passivation is almost always a multistep process, involving transfer of charge across
at least two interfaces and conduction phenomena taking place in the solid state and/or the electrolyte
solution. It is well known that the rates of interfacial charge transfers are highly nonlinear functions of the
overpotential, which is the departure of the potential difference from its equilibrium value. The transport
processes may also involve nonlinearities resulting from coupling between diffusion and migration of
charged species. When solid, electrically resistive reaction products are generated, the interfacial and
transport phenomena are inextricably linked; there is at present no general basis on which their relative
importance to the overall kinetics can be assessed. Existing treatments, based on the assumption that
either process is rate-controlling, are not suitable for this purpose, since they imply that the other process
is infinitely fast. What is required is a more general model allowing for mixed kinetic control, where both
processes are assumed to occur at finite rates.

In this paper, the interaction between the two elementary processes identified above is explored by con-
sidering a passivation process involving deposition of a porous layer of an otherwise insulating substance.
The potential and ionic concentrations within the pore electrolyte are calculated by exact solution of the
steady Nernst-Planck equations, eliminating the need for the approximations inherent in existing treat-
ments. The contributions of diffusion and ionic migration to the species fluxes are thereby determined
self-consistently as a function of current density. Calculations of the electrochemical kinetic character-
istics of the process lead to the conclusion that, in the presence of excess inert electrolyte, the potential
drop associated with ionic conduction through the pore electrolyte makes a small contribution to the total
polarization. In contrast, the surface overpotential (associated with the finite rate of interfacial charge
transfer) exerts the dominant influence in the early stages of passivation, while the concentration over-
potential (resulting from concentration variations within the pore electrolyte) is predominant in the later
stages.
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1 INTRODUCTION

A common characteristic of the theoretical models that have been developed to describe metal passivation
is the assumption that charge transport processes of some kind are rate limiting. For example, according
to the Layer Pore Resistance Model (LPRM) [Müller, 1931; Calandra et al., 1974; Devilliers et al., 1986],
passivation of the surface results when deposition of an insulating material reduces the volume fraction
of the electrolyte in the surface layer, thereby increasing its resistance. Alternative mechanisms involve
solid-state migration of ions [Cabrera and Mott, 1949; Dignam, 1972] or charged point defects [Mac-
donald, 1992] under the influence of an electric field, which reduces as the film thickens. Such transport
phenomena are in general nonlinear, as a result of the coupling of species fluxes to each other by the
potential, which satisfies Poisson’s equation [Smythe, 1968].

Formation of a surface film requires transfer of charge across at least two interfaces, in addition to these
conduction phenomena. The electrical behavior of such a process can be regarded as conceptually equiv-
alent to flow of electricity through impedances in series. The simplicity of such a lumped-element rep-
resentation is, however, deceptive, since each impedance depends on the current flowing through it. The
contribution of each impedance to the total potential difference can be obtained by imposing a current
balance condition across each interface. When the series impedances are nonlinear, this balance condi-
tion is expressed by a transcendental equation, numerical solution of which typically presents no problem.
In the extension by Marshall [1993] of the LPRM to include interfacial charge transfers proceeding at a
finite rate, the interfacial impedance was potential dependent, while the impedance of the solution was as-
sumed to be constant (which is equivalent to postulating that the potential in the pore electrolyte satisfies
Laplace’s equation.) The applicability of that particular model is limited by the assumption that the pore
electrolyte is of uniform concentration, since this implies that the migration flux of electroactive species
is always sufficient to compensate for its consumption by reaction. The purpose of the present paper is
to describe an improved model that is based on the solution of the steady Nernst-Planck equations for the
ionic concentrations and potential, rather than the Laplace equation.

2 CONCENTRATION AND POTENTIAL PROFILES

In the absence of convection, one-dimensional transport in dilute electrolyte solutions is governed by
the Nernst-Planck equations, according to which the fluxJi (mol·m−2·s−1) of an ion i with valence
zi, concentrationci (mol·m−3), diffusivity Di (m2s−1), and mobilityui (mol·s·kg−1) is related to the
potentialφ by

Ji = −Di
∂ci
∂x

− ziuiFci
∂φ

∂x
, (1)

whereF is the Faraday constant (96485 C·mol−1). The extra equation needed to determine the potential
is either Poisson’s equation∂2φ/∂x2 = −(F/ε)

∑
i cizi (whereε is the permittivity in F·m−1), or the

local electroneutrality condition
∑
i cizi=0, which is an entirely adequate approximation except when

the density of charge carriers is very low. We consider a three-ion system M+ (1), A− (2), and B− (3)1,
in which the concentrations in the bulk of the solution arec01, c02, andc03 (c01 = c02 + c03), and assume
that the ion that is discharged is A, according to the reaction

A− → A(s) + e−. (2)

Then, introducing a reference lengthL (m), making use of the Nernst-Einstein equationui = Di/RT
(whereR is the gas constant, 8.31451 J·K−1mol−1, andT is the absolute temperature, K), and defining
Ci = ci/c01, X = x/L, ψ = Fφ/RT , and dimensionless fluxesni = JiL/Dic01, the flux equations
become

C1X + z1C1ψX = −n1, C2X + z2C2ψX = −n2, C3X + z3C3ψX = −n3. (3)

In this casez1=1, n1=0, z3=-1, n3=0, z2=-1, andn2 = −I ≡ − iL
FD2c01

. Denoting byr the ratio of the
supporting electrolyte concentration to the total electrolyte concentration in the bulk solution, the vector
1The addition of an inert or supporting electrolyte to increase the conductivity is common practice in experimental electrochemistry.
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Figure 1: Ionic concentration and Potentials obtained from the Nernst-Planck equations. Electrolyte
consists of cation (1), active anion (2), and inactive anion (3), withr=0.1. The current density is equal to
0.99 times the limiting current density.

of concentrations at the outer boundary of the layer, whereψ=0, isC0 = [1, 1 − r, r]T . This system of
nonlinear partial differential equations can be solved as described by [Rubinstein, 1990, chapter 4], to
give

C1(X) = e−ψ = 1− I

2
(1−X); C2(X) = e−ψ − eψr = 1− I

2
(1−X)− r

1 + I
2 (1−X)

; (4)

and

C3(X) = eψ =
r

1 + I
2 (1−X)

.

The current at whichC2(0) = 0 is reached can be determined by solving

0 = 1− Ilim
2
− r

1− Ilim

2

=⇒ Ilim = 2
[
1−

√
r
]
. (5)

The effect of a supporting electrolyte on the corresponding potential difference across the diffusion layer
can be determined by substituting this expression into that forψ(X) for X=0. Thus,

ψ(0) = − ln
[
1 +

I

2

]
= − ln

[
1− 1 +

√
r
]

= − ln
√
r. (6)

The form of the potential profile depends strongly on the value ofr. For small values (e.g.,r = 0.1), the
potential profile is nonlinear, but this curvature becomes insignificant asr → 1. Deviations from linearity
are imperceptible ifr ≥ 0.9, indicating that Ohm’s Law is a good approximation in this case.

3 CONCENTRATION OVERPOTENTIAL

The variation in the composition of the layer of pore electrolyte gives rise to a concentration overpotential.
For an electrode at which the then-electron process∑
k

skMzk

k → ne− (7)
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occurs (wheresk and Mk represent, respectively, the stoichiometric coefficient and formula of speciesk),
this definition is expressed by [Newman, 1973, page 384]

ηc = in

∫ ∞

0

(
1

κ(x)
− 1
κ∞

)
dx+

RT

nF

∑
i

si ln
ci(∞)
ci(0)

+ F
∑
i6=0

∫ ∞

0

ziDi

κ(x)
∂ci(x)
∂x

dx, (8)

wherein is the current density normal to the electrode, andκ(x), κ∞ represent the conductivity at pointx
and in the bulk of the solution, respectively. In terms ofD2 = D2/D1,D3 = D3/D1, the dimensionless
conductivity is

K =
RTκ

c01F 2D1
≡ κ

κ0
= C1 +D2C2 +D3C3, (9)

which depends onI andX according to equations 4. For the film formation reaction,n=1, ands2=1. The
dimensionless form of equation 8 is

Hc =
Fηc
RT

= Hc1 +Hc2 +Hc3, (10)

where

Hc1 = ID2

∫ 1

0

(
1

K(X)
− 1
K∞

)
dX, Hc2 = ln

Ci(1)
Ci(0)

, Hc3 =
∑
i

∫ 1

0

ziDi
K(X)

∂Ci(X)
∂X

dX,

andK∞ = 1 +D2(1− r) +D3r. The concentrations determined earlier give

Hc1 = D2

[
1
A

ln
A+B

A(1− I/2)2 +B
− I

A+B

]
, Hc2 = ln

1− r
1− I/2− r/(1− I/2)

, (11)

and

Hc3 =
1

2A
ln

A+B

A(1− I/2)2 +B
−D2

[
1

2A

(
1− A

B
r

)
ln

A+B

A(1− I/2)2 +B
+
r

B
ln

1
1− I/2

]
(12)

−D3r

[
1
2

ln
A+B

A(1− I/2)2 +B
− ln

1
1− I/2

]
,

whereA = 1 + D2 andB = r(D3 − D2). The quantityHc2 makes the dominant contribution toH as
the limiting current density is approached.

4 SURFACE OVERPOTENTIAL

The current densityi for reactions of type 2 is commonly represented as

i

F
= kfc2(0)eαFV/RT − kre−(1−α)FV/RT , (13)

where the dimensionless parameterα ∈ [0, 1] is the fraction of the total electrical energy change con-
tributed to the activation energy of the reaction. Since the implied reversible potentialVr satisfies
eFVr/RT = kr/(kfc2(0)), this can be rewritten as

i

F
=

[
c2(0)
c02

]1−α

i0(c02)[eαFηs/RT − e−(1−α)Fηs/RT ], (14)

whereηs = V − Vr is the surface overpotential andi02 is the “true” exchange current density at bulk
concentrationc02, which is a measure of the rate of the reaction in forward and reverse directions at
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Figure 2: Contributions to total electrode potential, for Butler-Volmer kinetics withI0=0.05 andα=0.5,
and an electrolyte withr=0.9.

equilibrium. This kinetic law is known as the Butler-Volmer equation. Extensive discussion of it can be
found in the monograph by Newman [1973]. In dimensionless form,

I = I0

[
C2(0)
1− r

]1−α [
eαHs − e−(1−α)Hs

]
, Hs =

Fηs
RT

, I0 =
i0(c02)L
D2c01F

. (15)

The potential of the electrode (relative to the bulk solution) required to sustain a given current density is

U ≡ FV

RT
= ∆ψ +Hc +Hs, (16)

where∆ψ = ψ(0) − ψ(1) is the potential drop across the diffusion layer. Writing this relationship as
Hs = U − ∆ψ(I) − Hc(I), and observing that∆ψ, Hc, andHs are all dependent onI, the Bulter-
Volmer equation defines the current density explicitly in terms ofU , and implicitly in terms of itself.
Equivalently, numerical solution of the equation

I =
[
C2(0)
1− r

]1−a

I0

[
eα[U−∆ψ(I)−Hc(I)] − e−(1−α)[U−∆ψ(I)−Hc(I)]

]
(17)

allowsC2(0), ∆ψ, Hc, andHs to be determined self - consistently as a function ofU . The results of
such a calculation are shown in Figure 2, forI0=0.05. The potential drop within the electrolyte is seen to
be very small in comparison with the overpotentials.

5 PASSIVATION K INETICS

When a fractionθ of the metal surface is covered by insulating film, the ionic flux equations become

(1− θ)[CiX + ziCiψX ] = −ni (18)

for each species in the pore electrolyte. For the current-carrying species (2), the equation can be written
as

C2X + z2C2ψX = −I/(1− θ), (19)
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Figure 3: Transient currents resulting from potential steps fromUi=0 to different final potentialsUf .
Exchange current densityI0=1, r=0.9.

and since all the other ionic fluxes are zero, the concentration distributions in the pore electrolyte are given
by the earlier equations withI replaced throughout byI/(1− θ). As coverage of the electrode proceeds,
the implicit equation forI must be solved for each value ofθ. In this process, the relative contributions
of the different overpotentials toU change. Forθ ≈ 0, surface overpotential is dominant, and asθ →
1, concentration overpotential becomes dominant. In the numerical solution of the dimensionless rate
equation forθ, viz.,

dθ

dτ
=

[
C2(0)
1− r

]1−α [
eαHs − e−(1−α)Hs

]
(20)

(whereτ = i0t/Q0 andQ0 is the charge density required for complete coverage). Adopting the initial
condition θ(0) = 0, it is possible to calculate the potentiostatic transient currents resulting from an
instantaneous potential steps from initial potentialUi=0 to various final potentialsUf , which are shown
in Figure 3. The asymptotically log-linear form of these transients is similar to the pseudocapacitive
behavior expected from the original LPRM. The transients resulting from a linear variation of potential
U = U0 + στ , are shown in Figure 4. The peak currents are found to be proportional to the 0.36 power
of σ, in contrast to those calculated from the LPRM, which are proportional toσ1/2.

6 DISCUSSION AND CONCLUSIONS

The foregoing treatment of electrode passivation is notable in being entirely nonlinear, but requiring no
additional approximations. The exact solution of the system of nonlinear coupled PDEs defining the
steady potential and concentration profiles eliminates the need for the assumption that the electric field is
constant. The calculations presented show that, far from being negligible (as assumed in the LPRM), the
surface and concentration overpotentials make highly significant contributions to the total polarization. In
the presence of a large excess of inert supporting electrolyte, these overpotentials are much larger than the
potential drop within the pore electrolyte, but in the case of a binary electrolyte (for whichr=0), equation
6 shows that the solution potential drop could also become very large. The conclusion reached in the ear-
lier work [Marshall, 1993] that unrealistically high exchange current densities would be required for the
assumptions of the original LPRM to be justified is also valid for the present treatment. But the divergence
of the logarithmic termHc2 in equation 11 asC2(0) → 0 ensures that the concentration overpotential
will always become dominant as the limiting current density (which decreases asθ → 1) is approached.
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Figure 4: Transient currents resulting from linear potential scans from initial potentialU0=0, at different
dimensionless scan ratesσ. Exchange current densityI0=1, r=0.9.

This means that a situation in which the resistance of the electrolyte overpowers the combined effects of
concentration and surface overpotentials is even less likely to be practically realizable.
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