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Abstract: We consider the propagation of an exothermic reaction front subject to possible heat loss
through a competitive endothermic reaction. Such reaction schemes are of considerable practical impor-
tance to industry, where they arise in connection with ammonium nitrate based explosives and explosive
gas combustion in underground mines, for example. In particular, competitive endothermic-exothermic
reaction schemes are appropriate for the study of the burning of ammonium nitrate (NH4NO3) in the
context of emulsion explosives, which finds abundant application in mining and other industries. It is
common to represent the chemistry of ammonium nitrate combustion as two competitive reactions —
one exothermic and one endothermic:

NH4NO3 → NH3 +HNO3 (endothermic)
NH4NO3 → N2O + 2H2O (exothermic)

Properties of the reaction fronts, which are modelled as travelling wave solutions of a corresponding
reaction-diffusion system, are derived numerically over a range of different parameter values, such as
those describing the relative enthalpies, rates and activation energies of the endothermic and exothermic
reactions. These properties include the speed of the reaction front and the peak temperature produced by
the reaction. Unique reaction front solutions have been shown to exist for each distinct combination of the
parameter values. The stability of the reaction fronts are of particular interest and it has been shown that
when the activation energy of the endothermic reaction is twice that of the exothermic reaction, stable and
oscillatory unstable reaction regimes exist. In this case, if the heat released from the exothermic reaction
is sufficiently large in proportion to the heat absorbed by the endothermic reaction, the reaction fronts are
stable, while if the relative heat released by the exothermic reaction is not sufficiently large the reaction
fronts are oscillatory unstable.

The analyses presented in the current paper, however, indicate that the assumption of the endothermic
activation energy being twice that of the exothermic reaction implies that the endothermic reaction is
essentially deactivated. As such, and as shown by Sharples et al. (2011), the behaviour of the reaction
front is not all that different to that seen in a single-step exothermic reaction. The analyses reveal a range
of parameter values where behaviour of the reaction front could be expected to depart significantly from
a single-step exothermic reaction. We present some preliminary numerical results for parameter values
in this range and indicate some directions for future work, particularly in regards to the stability of the
reaction fronts.
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1 INTRODUCTION

This work concerns the existence and propagation of reaction fronts through reactive media where dif-
fusive processes are present and where a main exothermic reaction is accompanied by an endothermic
reaction as well. A number of authors have addressed problems where an independent endothermic pro-
cess affects the progress of a combustion front (Gray et al. 2002, Please et al. 2003, Simon et al. 2003,
2004); our concern in this paper is with the possibility of competitive endothermic and exothermic reac-
tions, where the same reactive material provides the feed for both reactive steps (Hmaidi et al. 2010).

Though most observed physico-chemical phenomena are a consequence of several, often numerous, con-
current or consecutive endothermic and exothermic reactive processes, much useful understanding can of-
ten be gained by considering much simpler “lumped” models which reproduce the essential phenomenol-
ogy. In some cases, notably when thermal effects are prominent in the process, the simplest useful model
comprises a pair of reactions, one exothermic and one endothermic, characterised by different chemical
kinetics. These reactions may feed on the same unique reactant material, so-called competitive reactions,
or each reaction may independently consume a different reactant, so-called parallel reactions (Ball et al.
1999). In the parallel case the coupling between the reactions is solely thermal, whereas in the competitive
case there is a second coupling through the reactant consumption.

In contrast to the case of parallel reactions, which has been widely studied, competitive reactions have
received little attention. This situation is less that desirable given the appropriateness of competitive
schemes in modelling decomposition or pyrolysis processes (Antal and Varhegyi 1995, Wu et al. 1994)
and their applicability to ammonium nitrate based explosives (Sinditskii et al. 2005). An exception
to this observation is the study by Clavin et al. (1987) which established the existence of combustion
wave multiplicity in the case of competing exothermic reactions. Whereas, in the parallel case, the net
enthalpy production by complete consumption of both reactants is uniquely determined, this is not true
for competitive reactions, where the net production depends on the full time history of the process; if
the temperature is kept relatively low, by thermal diffusion or other extraneous effects e.g. Newtonian or
radiative cooling, the net production may be, counter-intuitively, actually increased.

Hmaidi et al. (2010) investigated the existence and stability of travelling one-dimensional reaction fronts
propagating through a solid reactive slab (infinite Lewis number), effectively extending the work of
Matkowsky and Sivashinsky (1978) to the case where heat is lost through a competitive endothermic
reaction term. The behaviour of the competitive system was modelled by regarding the endothermic re-
action as a perturbation to an exothermic reaction. This necessitated some restrictions on the ordering
of the kinetic parameters of the endothermic step. Specifically, the endothermic reaction was assumed to
have twice the activation energy of the exothermic reaction and a pre-exponential frequency term much
greater than that for the exothermic reaction. In the present paper we scrutinise the consequences of these
assumptions, particularly with reference to the relative magnitudes of the activation energies. Moreover,
we modify the ratio of activation energies so that the endothermic reaction plays a greater part in the
overall reaction scheme and examine the behaviour of the reaction fronts that result.

The work reported here therefore extends the work of Hmaidi et al. (2010) and our previous work
(Sharples et al. 2011) to consider a more comprehensive range of parameter values. We again consider
propagation of a reaction front in which the driving exothermic reaction competes with an endothermic
reaction that consumes both reactant and heat within the system. As mentioned, the parameter values we
assume permit a stronger contribution from the endothermic reaction. Following Hmaidi et al. (2010),
we assume adiabatic conditions, though unlike Hmaidi et al. (2010) we allow for the diffusion of reac-
tant as well as heat (Sharples et al. 2011). We also lift the restriction of large activation energies and
pre-exponential frequency of the endothermic reaction.

2 MATHEMATICAL MODEL

It is assumed that the, possibly non-solid, reactant undergoes two competitive reactions: one exothermic
and one endothermic, and that the reaction products are chemically inert and have no effect on physi-
cal properties such as the diffusivity of the reaction surroundings. Arrhenius kinetics are assumed for
both reactions with the endothermic reaction kinetics characterised by the activation energy E1, the pre-
exponential factor A1 and heat release Q1 < 0. The exothermic reaction drives the combustion and is
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characterised by the activation energy E2, the pre-exponential constant A2, and heat release Q2 > 0. To
summarise, we may represent the reaction scheme as the two competing reactions:

R → P1 +Q1, k1(T ) = A1 exp(−E1/RT ) (endothermic reaction)
R → P2 +Q2, k2(T ) = A2 exp(−E2/RT ) (exothermic reaction)

where T is temperature and k1(T ) and k2(T ) are the temperature-dependent reaction rates of the en-
dothermic and exothermic reactions, respectively. The reactant is common to both reactions and is repre-
sented by R, with the two different reaction products represented by P1 and P2.

The governing equations for the system described are then the heat and mass balance equations accounting
for the reaction and diffusion of heat and reactant (e.g. Weber et al. (1997)):

ρcp
∂T

∂t′
= k

∂2T

∂x′2 + ρ
(
−Q1A1e

−E1/RT +Q2A2e
−E2/RT

)
C (1)

ρ
∂C

∂t′
= ρD

∂2C

∂x′2 − ρ
(
A1e

−E1/RT +A2e
−E2/RT

)
C (2)

Here C denotes the reactant mass fraction. Time and space coordinates (in the laboratory frame) are
denoted by t′ and x′, ρ is the density (assumed constant), k is the thermal conductivity, D is the coefficient
of mass diffusion, R is the universal gas constant and cp is the heat capacity at constant pressure of the
reactant.

Introducing the dimensionless temperature and space and time coordinates:

u =
RT

E2
, x =

√
ρQ2A2R

kE2
x′, t =

Q2A2R

cpE2
t′, (3)

the system (1, 2) can be written in non-dimensional form as

∂u

∂t
=

∂2u

∂x2
+ Ce−1/u − qrCe−f/u (4)

∂C

∂t
=

1

Le

∂2C

∂x2
−ΘCe−1/u −ΘCre−f/u, (5)

where the new parameters are defined as follows:

Θ =
cpE2

RQ2
, q =

Q1

Q2
, f =

E1

E2
, r =

A1

A2
, Le =

k

ρcpD
(6)

For the sake of the present analysis we will consider travelling wave solutions to the system (4, 5). To
this end we express the system in terms of the coordinate frame defined by ξ = x−vt, which moves with
the reaction front at a constant speed v. Rewriting the system in terms of ξ yields the system of ordinary
differential equations:

uξξ + vuξ + C
(
e−1/u − qr e−f/u

)
= 0 (7)

Le−1 Cξξ + vCξ − CΘ
(
e−1/u + r e−f/u

)
= 0 (8)

Solutions to the system (7, 8) are obtained using shooting and relaxation techniques. The reader is referred
to Gubernov et al. (2003) for further details on the numerical solution scheme.

3 ASYMPTOTIC RESULTS

In this section we present some results pertaining to the effect of varying the parameter f . Asymptotic
results are available in two parameter ranges, the first corresponding to f # 1 for which the exothermal
reaction dominates, and the second corresponding to f → 1 so that the activation energies of the two
reactions are closely matched.
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Figure 1. (a) Dependence of the reaction temperature, uf , on f , and (b) Dependence of the wave speed
v on f , for Le = 1, Θ = 5, q = 5, r = 2. The green curves are plotted according to asymptotic formulae
(10) for 0 < f − 1 $ 1. The blue curves correspond to the AEA (Θ # 1) asymptotic formulae (9) for
the one-step model. The red curves show the numerical results.

3.1 Asymptotic results for when the exothermic reaction dominates

Assuming f # 1 the second (endothermic) reaction is effectively deactivated and a single-step reaction
model can be considered. In the case of asymptotically large Θ a perturbation analysis gives the well
known formulas for front speed and reaction temperature

uf → ub = Θ−1, v =

√
2Le

Θ
exp

(
−Θ

2

)
. (9)

3.2 Asymptotic results for when the activation energies are closely matched

We consider f approaching unity (from above), so that f−1 can be treated as a small (positive) parameter.
Varying f in this way has the effect of reducing the relative magnitude of the activation energy of the
endothermic reaction, thereby increasing the endothermic effect in the reaction scheme.

Taking f − 1 → 0 and treating it as a small parameter permits asymptotic analysis. Taking the other
parameters as fixed and O(1) the following expression for the reaction front speed and temperature uf in
the product zone is obtained

uf → u∗, v =

√
ΘLe(1 + q−1)

Ω
u∗ exp

(
−1 + u0u∗

2u∗

)
, u∗ =

f − 1

ln(qr)
(10)

where u∗ is the crossover temperature at which the rates of the endothermic and exothermic reactions are
equal; Ω and u0 are constants of the order of O(1) which do not depend of f .

Whilst the expression for v is singular at f = 1, it does indicate that the front speed reduces to zero as
f → 1 (providing qr > 1).

3.3 Numerical results

Figure 1 shows how the asymptotic formulae fit with values of the flame temperature and wave speed de-
rived numerically for Le = 1, Θ = 5, q = 5, r = 2 and 1 < f ≤ 5. It can be seen that the limits indicated
above are realised at least for the parameter ranges so far considered. Furthermore, the figures indicate
that there are three front propagation regimes. Figure 1a shows that for f > 2 the endothermic reaction
is almost completely frozen, the reaction temperature is equal to the adiabatic reaction temperature ub

that arises in the corresponding one-step model (r → 0). As f becomes smaller there is an intermediate
reaction regime between approximately f = 1.2 and f = 2.0 where the endothermic reaction becomes
important and the temperature diverges from ub. As f → 1 the influence of the endothermic reaction as
a heat sink increases in significance and the reaction temperature converges to u∗.
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In Figure 1b the dependence of speed of the reaction front v on f is plotted. It is seen to exhibit the
same type of behaviour as the reaction temperature. For large f the speed is constant and is equal to the
reaction speed for the one-step model. The asymptotic equation (9) gives a higher value which is not
surprising since Θ = 5 is too small to expect good quantitative agreement. As f → 1 the increasing
significance of the endothermic reaction is observed, as described by equations (10). In particular, there
is good agreement between the numerical results and the asymptotic formula for v as f → 1.

4 PARAMETRIC ANALYSIS

Recalling the definition of the crossover temperature u∗ (equation (10)) we can identify four distinct
regions of parameter space:

1. u∗ < 0: f > 1, qr < 1

2. u∗ < 0: f < 1, qr > 1

3. u∗ > 0: f > 1, qr > 1

4. u∗ > 0: f < 1, qr < 1

If u∗ < 0, then for any physically feasible reaction temperature the rates of heat release and consumption
cannot be equal i.e. one always dominates the other. If f > 1, rq < 1 (case 1) the exothermic reaction
always releases more heat than can be consumed by the endothermic reaction. Therefore the solution
could theoretically exist. On the other hand, if f < 1, rq > 1 (case 2) the heat balance is in favour of
heat consumption and the rate of heat reduction by the endothermic reaction is always greater. It is thus
not possible for the reaction front to continue propagation once the temperature falls below the activation
temperature.

For parameter values with u∗ > 0, u∗ → ∞ as qr → 1. The limit f → 1 is also distinguished, since
u∗ → 0 and changes sign as the line in parameter space described by f = 1 is crossed. In fact, for f = 1
the competitive reaction scheme reduces to the following one-step combustion scheme (Gubernov et al.
(2003)):

uξξ + vuξ + C(1− rq)e−1/u = 0, (11)

Le−1 Cξξ + vCξ − CΘ(1 + r)e−f/u = 0. (12)

Obviously, if qr > 1 then the heat release is negative in (11) and no solutions can exist. This again
supports the notion that for f < 1 and qr > 1 the reaction exhibits extinction. If qr < 1, then changing
the variables to z =

√
1− qr ξ, yields

uzz + v′uz + Ce−1/u = 0, (13)
Le−1 Czz + v′Cz − Cβe−1/u = 0. (14)

where

β =
Θ(1 + r)

(1− qr)
, v′ =

v√
1− qr

. (15)

In the large β limit this gives the following formula for flame speed v′ and flame temperature ub:

v′ =
√
2Leβ−1e−β/2 ub = β−1. (16)

Note that β → ∞ as qr → 1, and so the above expressions (16) for speed and temperature should be
accurate. In the original variables we have

v =

√
2Le(1− qr)2

(1 + r)Θ
exp

(
−Θ(1 + r)

2(1− qr)

)
, ub =

1− qr

Θ(1 + r)
. (17)
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Figure 2. Dependence of the wave speed v on Θ for Le = 1.The red curve shows the speed for f = 1.156
while the blue curve shows the speed for f = 2.

Thus according to (17) as qr → 1 the speed approaches zero in a very sharp way and the reaction tem-
perature vanishes. This again supports the argument that extinction should occur in this limit. Moreover,
note that if f = qr = 1 then the system (7, 8) degenerates to one whose only solution is u = 0 and C =
constant.

5 DISCUSSION AND CONCLUSION

We have presented an analysis of a competitive endothermic-exothermic reaction scheme, which despite
their application have received only fleeting attention in the literature. Based on consideration of the
parameter f , which describes the relative magnitude of the activation energies of the endothermic and
exothermic reactions, three regimes of reaction behaviour were identified. For f > 2 the exothermic
reaction dominates and reaction properties are thus close to those obtained through consideration of a
single step exothermic reaction. Indeed, the reaction wave characteristics and stability properties for
f = 2 discussed by Sharples et al. (2011) bear a strong resemblance to those obtained in the single-step
exothermic reaction case (Gubernov et al. (2003)). The wave characteristics and stability results obtained
by Sharples et al. (2011) for f = 2 should therefore be considered as quite distinct from what might
arise as f → 1. For f → 1 the endothermic reaction has a stronger influence on the competitive reaction
scheme: the reaction temperature approaches the crossover temperature and the reaction front speed is
well approximated by an analytical formula. In the intermediate region 1 < f < 2 the behaviour of
the reaction should be more interesting and will form the focus of future work. Figure 2 shows how the
reaction front speed differs with varying f . Two cases corresponding to f = 2 and f = 1.156 are shown,
with the smaller f value corresponding to a lower overall speed.

It will be particularly interesting to investigate the effect that the endothermic reaction has on the stability
of the reaction wave as its influence becomes stronger. One would expect to find pulsating solutions for
certain combinations of the parameter values but the exact nature of these pulsations as the endothermic
effect starts to dominate is yet to be understood.
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