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Abstract: There is a world-wide need for the development of sustainable management strategies to control 
the development of phosphine (PH3) resistance in lesser grain borer (Rhyzopertha dominica). Computer 
simulation models can provide a relatively fast, safe and inexpensive way to weigh the merits of various 
management options. However, the usefulness of simulation models relies on the accurate estimation of 
important model parameters.  

Concentration and time of exposure are both important in determining the intensity of response to a toxic 
agent. The ability to estimate mortality or survival rate (1 – mortality) at a range of concentrations and 
exposure times based on experimental data is critical for the development of an accurate simulation of the 
evolution of resistance to phosphine. Our individual-based simulation model required predictions of finite 
daily survival rates at different concentrations for each of nine possible genotypes in our two-locus model.  

In this paper we briefly described how we used a two-parameter probit model Y = a + b log(Ct) and a four-
parameter probit model Y = a + b1 log(t) + b2 log(C) + b3 log(t) log(C) to fit three sets of experimental data 
(Collins et al, 2002, 2005; Daglish, 2004). Here C (mg/l) is the PH3 concentration, t (hour) is the exposure 
time and Y is the probit (= “probability unit”) mortality, which is the probability of mortality transformed by 
the inverse cumulative distribution function (CDF) associated with the standard normal distribution.  

The data sets of Collins et al. (2002, 2005) and Daglish (2004) are observed from five available strains of 
lesser grain borer, associated with five different genotypes. We still needed to construct a model predicting 
finite daily survival at different concentrations for the remaining four genotypes. As a step towards achieving 
this, we first estimated the resistance factors for the first five genotypes (strains) based on our fitted models. 
The resistance factor of a genotype x for a given fumigation duration is defined as the ratio between the PH3 
concentration that achieves 50% mortality in a sub-population of genotype x and the lower PH3 concentration 
that achieves 50% mortality in a susceptible sub-population. We then estimated the resistance factors for the 
other four genotypes by making some basic assumptions regarding genetic interactions; log-transformed 
resistance factors for the nine genotypes can be expressed in terms of five parameters which represent 
respectively the strength and the dominance of the 1st and 2nd genes, and the synergism between the two 
genes. Finally we modelled survival rates for the other four genotypes using the two-parameter probit model. 
We assumed that the parameter b for these genotypes was the same as the b value for one of the five strains. 
Finally, the value for parameter a for each of the four genotypes could then be obtained by direct substitution 
of the related values C, t and Y into the two-parameter probit model. 

Having constructed the probit models we obtained estimates of finite daily survival rates in two ways with 
the same total survival rate for each of the nine genotypes.  

Keywords: mortality estimation, probit models, finite daily survival rate, individual-based simulation, 
phosphine resistance, lesser grain borer  
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1. INTRODUCTION 

The lesser grain borer, Rhyzopertha dominica, is a very destructive primary pest of stored grains. Grain 
industries world-wide have come to rely heavily on phosphine (PH3) fumigant for the control of infestations 
of the pest. This has led to the development of PH3 resistance in R. dominica in many countries, including 
Australia. Hence, there is a world-wide need for the development of sustainable resistance management 
strategies. We are currently developing a two-locus individual-based simulation model to predict the 
evolution of phosphine resistance in R. dominica, in order to weigh the merits of various management options 
for delaying or avoiding resistance. 

Resistance to phosphine is an inherited trait. Our simulation model was constructed based on results from 
Collins et al. (2002) and Schlipalius et al. (2002). Their research revealed that the combination of alleles at 
two loci, rph1 and rph2, confers strong resistance and that rph1 by itself is responsible for the weak 
resistance phenotype. It seems that both rph1 and rph2 individually express a relatively low level of 
resistance but when they occur in the same insect the resistance mechanisms synergise, producing a much 
higher level of resistance. We consider two alleles on each of these two loci that govern the trait of 
resistance; dominant (susceptibility) alleles are denoted by A and B, and recessive (resistance) by a and b, 
respectively. Our two-locus simulation model includes nine possible genotypes:  

• ss:  with both loci homozygous susceptible (AA and BB) 
• sh: with the first locus homozygous susceptible (AA) and the second locus heterozygous (Bb)  
• sr:  with the first locus homozygous susceptible (AA) and the second locus homozygous resistant  (bb)  
• and similarly hs, hh, hr, rs, rh, through to 
• rr:  with both loci homozygous (strongly) resistant  (aa and bb).  
 
Computer simulation models can provide a relatively fast, safe and inexpensive way to project the 
consequences of different assumptions about resistance and to weigh the merits of various management 
options. But the usefulness of such models depends on generating or estimating the values of key parameters. 
In our individual-based model, these parameters include mortalities of insect pests under various pesticide 
doses, the chance of certain genotypes being produced as the result of the mating of certain parent genotypes 
(which we call offspring genotype tables), initial frequencies of genotypes, and the intrinsic rate of natural 
increase of an insect population. These are important parameters within the sub-models for simulating 
genetic recombination and thus determining the genotype of offspring, initialisation of the population, 
simulating the effects of pesticide applications and calculating the number of eggs produced by each insect, 
respectively. The ability to estimate mortality for all possible genotypes at a range of concentrations and 
expose times based on experimental data is particularly critical for the development of an accurate simulation 
of the evolution of resistance to phosphine. In this paper, we describe how we developed a series of empirical 
models to achieve this for our simulation model. 

First we fitted probit model of mortality for five genotypes, for which mortality data was available, as 
described in Section 2. We still needed to construct a model predicting survival rates at different 
concentrations for the remaining sh, sr, hr and rh genotypes. As a step towards achieving this, we first 
estimated the resistance factors for the first five genotypes, as described in Section 3. We then estimated the 
resistance factors for the other four genotypes (sh, sr, hr and rh) (Section 4). This was done by making some 
plausible assumptions regarding genetic interactions. We modelled survival rates for these genotypes using 
equation Y = a + b log(Ct), as described in Section 5. Finally we describe how we estimated finite daily 
survival rate of each genotype for our simulations using probit models in Section 6. As our individual-based 
simulation is based on a discrete daily time-step, we obtain an estimate for the finite daily survival rate in two 
ways with the same total survival rate for each genotype. 

2. FITTING PROBIT MODELS OF MORTALITY FOR FIVE STRAINS 

We used a novel method, least squares technique with generalized inverse matrix approach (e.g. Ben-Israel 
and Greville, 2003), to fit available data (Shi and Renton, 2011). This method has advantages over other 
methods: it is simple with only one key command, provides a more accurate estimate of parameters, and even 
if the coefficient matrix of the over-determined linear system is not numerically (column) full ranked it will 
still work and yield a solution with minimum error in the L2 norm sense (Ben-Israel and Greville, 2003).  

Collins et al. (2002) observed mortalities under a range of concentrations (C: mg/l) of phosphine at exposure 
time (t) 48 hr for susceptible (strain QRD14 – corresponding to genotype ss) and strong resistant (strain 
QRD569 - rr) phenotypes and their combined F1 progeny ((569×14)+(14×569) - hh). The neatened raw data 
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are listed in Table 1. Note that 
if the response (kill) rate is p = 
1 or 0 then we should change it 
from 1 to 0.9999 or from 0 to 
0.0001 or 10–8. Otherwise its 
probit value is undefined.  

The experiments in Collins et 
al. (2005) were done over a 
long period of time and the 
results were confirmed in field 
trials and are the basis for the 
current rates used to control 
resistant insects. LT99.9 values 
(lethal time to achieve 99.9% 
mortality) derived from their 
observed data for strain 
QRD569 exposed to a series of 
fixed concentration from 0.1 to 
1.0 mg/l at a range of exposure 
periods are listed in the 1st and 
2nd rows of Table 2.  

Daglish (2004) determined 
mortality rates of 50% (LC50) and 99% (LC99) for phosphine-susceptible (QRD14 - ss) and weak-resistance 
(QRD369 - rs) phenotypes and their F1 progeny (QRD369×QRD14 - hs) over a range of concentrations and 
exposure times (Table 3) 

We used the two-parameter 
probit model to predict 
mortalities for genotypes ss 
and hh using data in Table 1: 

Y = a + b log(Ct).            (1) 

Here Y is the probit (= 
“probability unit”) mortality, 
the inverse cumulative 
distribution (CDF) value plus 
5 associated with the standard 
normal distribution. For 
example, for 0.5 or 50% 
mortality, the inverse CDF value is 
0 (or when the random variable 
equal to the mean value 0, the CDF 
value is 0.5) and the probit value Y = 
5. 

Daglish (2004) used a Haber-type 
model (Bunce and Remillard, 2003), 
Cnt=k, to predict response to 
phosphine, for example, 
C0.8673t=0.2088 for the susceptible 
strain QRD14 at the LC50 (see Table 
3).  As n and k in their equations 
vary with genotype and mortality, it 
is not possible to develop a Haber-
type rule with which to successfully 
extrapolate predicted mortalities between exposure scenarios (Bunce and Remillard, 2003). Considering the 
interaction of concentration and exposure time, however, we employed the four-parameter probit model to 
refit their data: (incorporated with LT99.9 value at C = 0.02 mg/l and t = 352.8 h for the strain QRD369) 

Table 4. (a) Parameters derived from data of Collins et al. 
(2002) fitted to two-parameter model (1) 

Strain a b 

QRD14 (ss) 15.032386 9.229083 

QRD569×14 7.954711 5.913329 

 (b) Parameters derived from data of Daglish (2004) with Collins 
et al. (2002, 2005) fitted to four-parameter model (2) 

Strain a b1 b2 b3 

QRD14 (ss) 3.974876 12.326743 3.870027 1.924693 

QRD369×14 (hs) 11.284676 3.776399 6.964954 –1.010451 

QRD369 (rs) –10. 413046 15.575413 0.047656 4.701759 

QRD569 (rr)  –12.232356 10.386287 3.101974   1.190773 

Table 1. The data of phosphine dose and the aggregate response mortality 
rate for the genotypes ss, hh, and rr (Collins et al. (2002) ) 

QRD14 (ss) 

Dose C (mg/l) 0.001  0.0015 0.002  0.003  0.004   

Mortality 0.0201 0.32 0.7047 0.9733 0.9999 

Comb F1 (hh) 

Dose C (mg/l) 0.0025 0.004 0.005 0.0075 0.01 0.02  

Mortality 0.0001 0.3445 0.3940 0.8047 0.8591 0.9868 

QRD569 (rr) 

Dose C (mg/l) 0.1 0.25 0.5 1.0 1.25 1.5 3.0 

Mortality 10–8 0.0200 0.2254 0.5203 0.5705 0.5973 0.9604 

Table 2. Response to PH3 of mixed-age cultures of strain QRD569 

Dose:    C (mg/l)     0.1   0.15  0.2    0.3   0.4   0.5   0.75  1.0 

LT99.9 

(day) 
Observed 14.02 12.74 8.509 7.144 6.55 5.628 4.233 3.74 

predicted 14.70 11.28 9.416 7.368 6.23 5.489 4.393 3.77 

Table 3. Concentration (LC50 & LC99) values (mg/l) required to achieve 
50% and 99% mortality for different exposure times (t) (Daglish (2004)) 

Strain  Mortality 20h  48h  72h  144h  Cnt=k

QRD14  

(ss)                  

50%        

99% 

0.0052 

0.0091   

0.0017 

0.0037   

0.0011 

0.0021   

0.00064 

0.0014  

C0.8673t = 0.2008 

C0.8540t = 0.4108 

QRD369  

(rs)                  

50%        

99% 

0.20 

0.40       

0.052  

0.091     

0.032 

0.060     

 0.017 

 0.028 

C0.8673t = 4.0908 

C0.8540t = 7.0783   

QRD369×  

QRD14 (hs)  

50%        

99% 

0.010 

0.026     

0.0042 

0.013     

0.0023 

0.0066   

 0.0011 

 0.0025     

C0.8673t = 0.3863 

C0.8540t = 0.9715 
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Y=a+b1log(t)+b2log(C)+b3log(t)log(C)                          (2)  

This model was also used to fit the parts of both data sets of 
Collins et al. (2002, 2005) at C from 0.1 to 1.0 mg/l. The 
parameters for the five strains are listed in Table 4. Details 
are included in Shi and Renton (2011). Details of probit 
models are included in Finney (1971).  

3. ESTIMATION OF RESISTANCE FACTORS FOR 
THE FIVE STRAINS 

The resistance factor of a genotype x for a given fumigation 
duration is defined as the ratio between the PH3 
concentration that achieves 50% mortality in a sub-
population of genotype x and the lower PH3 concentration 
that achieves 50% mortality in a susceptible sub-population 
(FAO, 1975). Mathematically, the resistance factor for 
genotype x is yielded by  

            f(x) = LC50(x)/ LC50(ss).               (3)  

We estimated LC50 for 48 hour exposure for 
the first five genotypes using our fitted 
models (1) or (2) by inserting t = 48 and 
probit value Y = 5 (corresponding to 0.5 or 
50% mortality). The results are listed in 
Table 5 [reported by Daglish (marked by 
#D) and Collins et al. (marked by #C) and 
estimated by Eq. (2) or (1)]. It can be see 
that the estimated LC50 values obtained using 
Eq. (1) and (2) are very close to reported 
values for all strains except for the hh 
genotype. In addition, estimated LT99.9 values 
are all very close to the observed LT99.9 

values (Table 2). This means our estimated resistance factors (Table 7) are also very close to the 
corresponding reported values. Note that the LC50 values of the susceptible genotype (ss) reported by the two 
papers are very close to each other: 0.00169 and 0.00174, and they are the same to four decimal places: 
0.0017 which is also the same as our estimated value. Hence in what follows we only use model (1) to predict 
mortalities for the ss genotype.  

4. ESTIMATION OF RESISTANCE FACTORS FOR THE OTHER FOUR GENOTYPES 

We estimated the resistance factors for the other four genotypes (sh, sr, hr and rh) by making some basic 
plausible assumptions regarding genetic interactions. We assumed that log-transformed resistance factors for 
the nine genotypes can be expressed in terms of five parameters k, d1, d2, s1 and s2 as shown in Table 6. Here 
s1 and s2 represent the strength of the rph1 and rph2 genes respectively, d1 and d2 represent the dominance of 
the rph1 and rph2 genes respectively, and k represents the synergism between the two genes.  

For the simplicity of notation 
we defined the constants  

Chs = ln f(hs),                      
Chh = ln f (hh) – ln f (hs),    
Crr = ln f (rr) – s1.            (4)                                                                   

Then we have the following 
four equations with five 
unknowns (x1, x2, x3, s2 and 
k) from the expressions for 
the genotypes rr, hr, hh, and 
rh from Table 6: 

Table 5. Reported and estimated LC50 

values (mg/l) for 48 hrs exposure  

 

Genotype 

LC50     Value 

Reported Estimated 

ss #C/#D: 0017 0.0017 

hs #D: 0.0042 0.0040 

hh #C: 0.00548 0.00659 

rs #D: 0.0520 0.0518 

rr #C: 1.0250* 1.0238* 

*The observed and estimated LC50 values for rr 
genotype obtained using Collins et al. (2002) data with 
the model (1). The predicted LC50 value was 0.9016 
obtained using the combined data sets at C from 0.1 to 
1.0 mg/l with the model (2). 

Table 7. The reported (log) LC50 factors for the five strains and the estimated 
LC50 factors for the remaining four genotypes sh, sr, hr and rh obtained from 
the relationships listed in Table 6.  

    2nd gene 

1st gene 

s h r 

    s 0 d2s2= ln  f (sh) = x2         

* f(sh) = 1.2537 

s2= ln f (sr) 

* f(sr)) = 5.5307 

    h f (hs) = 2.4706 

d1s1= ln f (hs)= 0.9045 

f (hh)  = 3.2235 

ln f (hh)= 1.1705 

 d1s1+ s2= ln f (hr) = x1 

* f(hr) = 18.4839 

    r f (rs)  = 30.5882 

s1= ln f (rs)= 3.4206 

d2s2+ s1= ln f (rh) = x3 

* f(rh) = 44.6005 

f (rr) = 530.3788 

ln f (rr)= 6.2736 

Table 6. The expressions of log-transformed resistance    
factors f (x) for genotype x in terms of five parameters 

     2nd gene 

1st gene 

s h r 

s 0 d2s2  

 [=x2=ln f (sh)] 

s2 [=ln f (sr)] 

h d1s1 d2s2+d1s1+k(d1s1) (d2s2)  

[= ln f (hh)] 

d1s1+s2+ k (d1s1)s2 

[=x1=ln f (hr)] 

r s1 d2s2+ s1+  k s1(d2s2)  

 [= x3= ln f (rh)] 

s2+ s1+  k s1 s2  

[= ln f (rr)] 
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       (s1k) s2+ s2 = Crr  (from rr),  x1– Chs [ s2k] – s2 =  Chs (from hr),  

       Chs [k x2]+ x2= Chh (from hh),  x3 – s1[ k x2] – x2= s1 (from rh).                                                           (5) 

We already had estimates for the factors f(ss), f(hs), f(rs), f(hh) and f(rr). From experimental data we also 
knew f(sr) is less than f(rs), and so s2 < s1.  We therefore assumed that s2 [=ln f(sr)]= ps1, with p = 0.5, which 
gave an estimate for f(sr), and then solved for the remaining unknowns successively from Eq. (5) to give 
estimates for f(sh), f(rh) and f(hr): 

 k = (Crr – ps1)/ ps1s1,  x1 = Chs + k ps1Chs + ps1,  
x2 = Chh / (kChs +1),  x3 = (k s1+1) x2+ s1.         (6)          

The LC50 resistance factors reported for the five 
strain and estimated for the other four genotypes 
can be derived from (see Eq.(3) and Table 5) 

       LC50(x)=0.0017f50(x).                                 (7)                                                                          

The results are listed in Table 7. Note that the 
estimated (ln) LC50 factors for rr genotype were   
f(rr)=602.9418 and lnf(rr)=6.4018 respectively if 
we used  Collins et al. (2002) data only to fit the 
probit model (1). 

5. CONSTRUCTING A PROBIT 
MORTALITY MODEL FOR THE 
OTHER FOUR GENOTYPES 

Fig. 1 shows the plot of probit values based on 
our fitted models against a range of 
concentration values [0.01, 1.0] (mg/l) at a fixed 
t = 24 hrs for ss, hh and rr predicted from Eq. (1) 
and for hs and rs genotypes from Eq. (2). Note 
this is different to the finite daily rate we discuss 
below. 

For modelling survival rates using Eq. (1) for the 
other four genotypes (x= sh, sr, hr and rh), we 
needed to fix two parameters a(x) and b(x). We 
see from Fig. 1 that the middle three lines for the 
hs, hh and rs genotypes are nearly parallel 
implying that the slopes are nearly the same. We 
assumed that the parameter b(x) for these 
genotypes is the same as the estimated slope for 
the hh genotype, b(hh). Under this assumption it 
can be expected that none of the nine probit lines 
(at a fixed time t = 24 hrs) would intersect within 
the “middle zone” (–1.706 < Y < 11.706). We 
already had estimates for the resistance factors for 
t = 48 hrs for each of the four genotypes. We 
obtained estimates of their LC50 values by the 
formula (7). Furthermore, we estimate the 
parameter a(x) for x = sh, sr, hr and rh using model (1) with all b(x) = b(hh) = 5.913329, log(C)=log(LC50(x)) 
and Y(x) ≡ 5 (mortality 50%). The estimated parameters a(x) are as follows:                                

                          a(sh)= 10.854928, a(sr)= 7.043248, a(hr)= 3.944565, and a(rh)= 1.682448. 

6. ESTIMATION OF FINITE DAILY SURVIVAL RATE 

Now we had a model predicting survival rates at a range of concentrations and times for each of the nine 
genotypes.  For the hs and rs genotypes this model was of the form of Eq. (2) and for the other genotypes it 
was of the form of Eq. (1). The probit lines at t = 24 hrs for all of the nine genotypes are shown in Fig.  2. 
Note that although the two lines for genotypes rs and rh intersect at the point (C, Y) = (0.0103, –1.91363). 

Figure 1. Five probit lines at the range concentration 
values [0.01, 1.0] mg/l and t = 24 hrs  

 Figure 2. Nine probit lines at the range 
concentration values [0.01, 1.0] mg/l and t = 24 hrs 
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This point is outside the “middle zone” which means both of these genotypes will effectively have 100% 
survival at such a low dose.           

Fig. 3 (a) shows the survival rates for genotypes ss, sh, sr, hs and hh at t = 24 hrs and the range of C from 
0.01 to 0.05 mg/l and (b) shows those for genotypes hh, hr, rs, rh and rr at t = 24 hrs and the range of C = 
[0.01, 1.0]. The survival curve for genotype hh appears in (a) and (b) for the purpose of comparison. Note 
different x-axis scales and the survival rate at C = 1.0 mg/l is about 99.81%. 

(a)                                                                          (b) 

  

Figure 3.  Survival rates by substituting t = 24 hrs and a range of C values for (a) genotypes ss, sh, sr, hs and 
hh  and (b) genotypes hh, hr, rs, rh and rr. Note different x-axis  

There are two ways to estimate the finite daily 
survival rate (FDSR) under a PH3 treatment C×T 
at a fixed concentration C (mg/l) and a range of 
times (1, 2, …, T days). Directly substituting the 
fixed C value and the series of t values into the 
prediction Eqs (1) and (2) results in the 
cumulative survival rates (CSR). The cumulative 
survival rate for the final Tth day is the total 
survival rate SVT(x) for genotype x for the full 
C×T treatment. One way to estimate FDSR is 
based on the assumption that the survival rate is the same each day during a fumigation treatment, in which 
case the FDSR is SVs1(x)  =  [SVT(x) ]1/T. The estimated finite daily and total survival rates under the two 
treatments of 0.01 mg/l ×14 days and 0.2 mg/l ×8 days are listed in Tables 8 and 9. The other way to estimate 
different FDSR for each day is as follows: convert 
the CSRi+1 and CSRi into the ith day’s daily survival 
rate SVdi(x) by setting SVd1(x) = CSR1(x) and then 
letting SVdi(x) = CSRi+1(x)/CSRi(x), i = 1, 2,…,T–1. 
Note that the total survival rate obtained by either of 
the two ways will be the same for each genotype. 
Fig. 4 shows the FDSR and CSR values for rr beetle 
obtained from the two ways. If the simulation is only 
concerned with the results after fumigation, then we 
can use the former approach with equal daily 
survival rates, as it is simpler. If the simulation is also concerned with accurately representing what happens 
during the fumigation process then we should use the latter approach, even though it is more complex and 
will increase the simulation time.  

7.   DISCUSSION AND CONCLUSION 

Note that the predicted survival rates depend on the prediction model and the observed data. Here the 
treatment 0.2 mg/l ×8 days was predicted to kill 99.2% of strongly–resistant beetles and to eradicate the 
other genotypes of beetles (their predicted survival rates after 9 days fumigation are all less than 1.×10–11).  

We also constructed another individual-based model which is based on the simplifying assumption that 
resistance is conferred by alleles at a single locus. When we compared the differences between the one- and 

 Table 8. The daily survival rate for the nine       
genotypes for treatment 0.01 mg/l×14days  

          2nd gene 

1st gene 

s h r 

     s 8.08×10–6 0.01050841 0.32155794 

     h 0.12774219 0.22071475 0.75579152 

     r 0.94699984 0.96198801 0.99995317 

 Table 9 The daily survival rate for the nine 
genotypes for treatment 0.2 mg/l×8 days 

         2nd gene  

1st gene 

s h r 

s < 1.×10–11  < 1.×10–11  6.33×10–10 

h < 1.×10–11  < 1.×10–11  0.00238214 

r 0.00030361 0.00719626 0. 54591027 
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two-locus models under the two treatments above, 
we aggregated the nine genotypes from the two-
locus model into just three groups each 
corresponding to a one-locus genotype. Then we 
set the survival rates for the three genotypes in the 
one-locus model as the mean value of the survival 
rates of the group elements. Hence the results 
described here provided survival rates for the one-
locus model as well. 

Using the two-locus model, we are currently 
investigating some operational factors which 
influence the development of phosphine 
resistance: the impact of different life stages and 
the impact of different initial gene frequencies on 
the effect of fumigation. All the finite daily 
survival rates for these studies are predicted by 
probit models (1) and (2) for the nine genotypes, 
as described in this paper.  

The results described in this paper allow us to accurately predict morality of the nine resistance genotypes of 
the lesser grain borer, Rhyzopertha dominica. This provides an essential component of our two-locus 
individual-based simulation model, which will help us predict the evolution of phosphine resistance in R. 
dominica, in order to weigh the merits of various management options for delaying or avoiding evolution of 
resistance in this destructive primary pest of stored grains. Since the project includes industry researchers and 
is supported by the National Plant Biosecurity CRC, which includes many collaborators from the stored-
grains industry, recommendations resulting from this study will have a clear route to extension and adoption.  
This will allow us to continue to use the relatively safe and effective phosphine (PH3) fumigant for the 
control of infestations of this serious pest, and thus help safeguard world-wide grain supplies. 
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 Figure 4. The same/different daily and cumulative
survival rate for rr beetle under 0.2 mg/l × 8 days
treatment 
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