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Abstract: For many inverse problems which arise in contributing to real-world decision-making, such
as formulating policy objectives for freshwater fish health, only an indicative understanding of the global
structure of the solution is all that is required for the associated decision-support. Examples include:

(i) Situations where only some linear functional of the solution is required. As noted in various publi-
cations, this occurs in quite independent situations. They include: the recovery of moments of the
spheres distribution from observations of the corresponding circles distribution on random plane
sections through the spheres (Jakeman and Anderssen (1975)); the evaluation of local solutions in
geodesy (Bauer et al. (2007)); a strategy for sparse recovery (Lu and Pereverzev (2009)), where
the required information corresponds to some substructure in a complex solution such as the wave-
length vibration of a target protein molecule in an NIR spectrum (Anderssen et al. (2003)); the
evaluation of linear functionals of the molecular weight distributions of polymers (Anderssen et al.
(1997); Anderssen (1999)).

(ii) Where it is only necessary to recover some feature of the solutions such as whether the solution, as a
function of the independent variable, is increasing, decreasing, convex or concave. Such situations
arise in: the foliage angle distribution problem (Anderssen et al. (1985, 1984)); the location of
some peak in the data as arises in resolution enhancement and derivative spectroscopy (Hegland
and Anderssen (2005); Anderssen and Hegland (2010)); some of the situations in (i) where the
required feature can be defined as a linear functional of the solution.

In aquifer parameter identification, a similar situation arises. It is often only the regional structure of and
connectivity within the aquifer that is required (Blakers et al. (2011)). For such situations, a piecewise-
constant approximation of the solution is all that is required to highlight the global features of the solu-
tion. Here, we examine the utilization of such approximations for the recovery of information about the
regionalized structure of an aquifer.

Here, using simulations, we examine the numerical performance of an anzatz proposed by Chow and
Anderssen (1991) for the recovery of acquifer transmissivity from observational data. The clear advantage
of their localization approach is that

• it removes the need to know the precise extent of the aquifer and the corresponding boundary
conditions, and

• it allows the structure of the zonation within an aquifer to be explored in an iterative manner.

Simulations, with synthetic data, confirm the utility of the proposed method to determine the zonation
structure within an aquifer.
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1 THE AQUIFER PARAMETER IDENTIFICATION PROBLEM

Much water for agriculture and human consumption comes from underground aquifers. Of the many
practical issues involved with their management, knowledge about their transmissivity, zonation and con-
nectivity is fundamental (Bear (1972); Blakers et al. (2011)) because they constrain how the water within
an aquifer system should be managed to the benefit of the various users. However, from a practical per-
spective, only indicative estimates of them are required, as it is the qualitative structure of their zonal
and regional variations that are the criteria that supports the associated decision making in the allocation
of the available water resources. Validation for there only being a need for an indicative understand-
ing of the transmissivity, zonation and connectivity within an aquifer relates directly to the fact that an
aquifer system is a geological structure which tends to have a fairly uniform structure on local scales and
a hetrogeneous zonation (sometimes disconnected) structure only on larger regional scales.

In the study of steady-state flow of groundwater in a confined aquiferΩ, the governing equation is the
following elliptic partial differential equation (Bear (1972); Yeh (1986))

−∇ · (α∇u) = f in Ω, (1)

whereΩ ⊂ R
d, d ∈ {1, 2, 3}, is a bounded domain,α : Ω → R denotes the transmissivity coefficient,

u : Ω → R is pressure andf is the source term. When the source termf and the coefficientα are given,
appropriate boundary information about the solutionu is required so that the corresponding forward (di-
rect) problem of determiningu in Ω has a unique solution. Conversely, the recovery of information about
the coefficientα, whenu andf are given, is an inverse problem withα being sensitive to perturbations
in u andf . It is the recovery ofα from measurements ofu andf , through the utilization of equation (1),
that is called the“aquifer parameter identification problem”.

From a practical perspective involving observational data, the challenge posed by the aquifer parameter
identification problem is complicated by the fact that

• because it is an underground structure, about which surface geology can only give marginal insight,
the actual shapeΩ of the aquifer is unknown,

• even ifΩ were known, the boundary conditions are not, and

• the spatial locations at which measurements of the changing pressureu has been recorded are quite
sparse.

As a direct consequence, especially when coupling this with the fact that only an indicative understanding
about the value of the transmissivity, zonation and connectivity are required, the focus must be on the
formulation of simple algorithms for the recovery of information from the available data.

As explained in Chow and Anderssen (1991), where the earlier use of zonation algorithms is briefly
surveyed, this was the motivation behind their formulation of a linear functional methodology. Chow and
Anderssen concluded, though the earlier algorithms represented useful proposals for situations where
detailed accurate data are available at a large number of locations (e.g. Emsellem and de Emarsil (1971);
Sun and Yeh (1985)), they were of limited utility in most practical situations.

2 THE CHOW -ANDERSSENANSATZ

The essential improperly posedness in the recovery of information about the transmissivityα from mea-
surements ofu andf relates to the fact that the observed pressure (piezometric head) datau must be
differentiated. This is clear from the structure of equation (1).

The essence of the ansatz involves four steps:

(a) the reformulation of the partial differential equation model in terms of a weak form,

(b) the application of integration by parts to move the differentiation of the observed pressure onto the
analytic test function,
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(c) the localization of the resulting linear functional representation for the transmissivity to a subregion
of the aquifer where the transmissivity is assumed to be constant, and

(d) the choice of the shape of the localization and the form of test function that facilitates the compu-
tational performance of the resulting algorithm.

As explained in Chow and Anderssen (1991) and Lamichhane and Anderssen (2011), in terms of the
notation of equation (1) and the application of the steps (a)-(d) of the anzatz, various linear functional
formulas for the estimation ofα on the subregionΛ ⊂ Ω can be derived which depends on the assumed
regularity of the solutionu of equation (1) and the test functionv. The two estimates forα investigated
here are

α̂1 =

∫
Λ

f v dx
∫
Λ
∇u · ∇v dx

, u ∈ H1(Λ), v ∈ H1

0 (Λ), (Scheme 1)

and

α̂2 = −

∫
Λ

f v dx
∫
Λ

u∆v dx
, u ∈ L2(Λ), v ∈ H2

0 (Λ). (Scheme 2)

The special form that they take is a direct exploitation of the assumption thatα is a constant in the
subregionΛ. In Scheme 1, the evaluation ofα̂1 involves the differentiation ofu, whereas, in Scheme
2, through an integration by parts in conjunction with the regularity imposed on the test functionv, the
evaluation ifα̂2 does not involve a differentiation ofu since it has been transferred to tov.

3 THE SIMULATIONS

In the simulations to test the numerical performance of the two schemes, we consider the one-dimensional
version of equation (1) withα modelled as a constant plus a small oscillatory perturbation of frequencyk

α = 10 + δ (sin (kx) + cos (kx)) .

The solutionu of equation (1) is assumed to have the form

u = 13x2 + 10x + 12 cos (3x) + sin (4x) + 12,

with the subregionΛ = [2, 4] ⊂ Ω. Usingδ = 0.1 andδ = 0.05, we compare the performance of the two
schemes.

The forcing functionf is computed by using the exact solution and the exact parameter in the differential
equation (1). For both schemes, two different test functions are used. A simple test function for Scheme
1 is given by the quadratic bubble function

vq(x) = 4
(x − a)(b − x)

(b − a)2
, x ∈ [a, b].

Consequently, vq ∈ H1(a, b) and it has zero boundary condition. For Scheme 2, a test functionv ∈
H2

0 (Λ) is required. A simple test function forvqs ∈ H2
0 (Λ) is the quadratic B-spline. SinceH2

0 (Λ) ⊂
H1

0 (Λ), vqs can also be used as a test function for Scheme 1. In addition, the popular cubic B-splinevcs

is utilized in the implementation of Scheme 2. These three test functions, when defined on the interval
[2, 4], are plotted in Figure 1.

As already noted, the first scheme requires the gradient of the solutionu to be computed, whereas the
second scheme does not. Becauseu comes from measurements, it is appropriate to use a scheme which
avoids its differentiation.

In all the Figures below, the exact and estimated values ofα are plotted for different choices of the
frequencyk. Eighty (80) equally spaced values fork ∈ [0.2, 40] have been used. In order to highlight the
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Figure 1: Test functionsvq (left), vqs (middle)andvcs (right)

Figure 2: The exact and estimated parameter versus frequencies forδ = 0.1, andδ = 0.05 for Scheme 1
with test functionvq
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Figure 3: The exact and estimated parameter versus frequencies forδ = 0.1, andδ = 0.05 for Scheme 1
with test functionvqs

variability in the structure ofα, its value at the mid-point of the interval[2, 4] is plotted, for each of the
discrete values ofk.

In the two subfigures of Figure 2, the comparison of exact and estimated parameters are plotted for
Scheme 1 when the test function isvq andδ = 0.1 andδ = 0.05, respectively. The estimated value for
α asymptotes to the constant value10 as the frequencyk increases. In addition, the errors between the
exact and the estimated values are smaller for the smaller value ofδ.

Similarly, the corresponding comparison of the exact and estimated value ofα for Scheme 1, when the
test function isvqs, is plotted in two subfigures of Figure 3. The behaviour seen in Figure 2 is repeated
in Figure 3. It follows that if the amplitude of the oscillatory perturbation is small, both schemes give
good estimates ofα for suitably large values ofk. While the numerical approximations from both test
functions are quite good, the convergence is better with the test functionvqs. These numerical results
support the theoretical result discussed in Lamichhane and Anderssen (2011).

A comparison of the exact and estimated values ofα for Scheme 2 are plotted in Figures 4 and 5 when the
test functionsvqs andvcs, respectively, are used. As before, the two subfigures correspond to choosing
δ = 0.1 andδ = 0.05. While the converegence for Scheme 2 is better than for Scheme 1, it is interesting to
note that both quadratic and cubic spline test functions are producing almost identical numerical estimates
for Scheme 2.

4 CONCLUSIONS

Living with uncertainty is the nature of solving inverse problems for real-world situations such as aquifer
parameter identification. From a decision making perspective, only indicative solutions are required. The
exploitation of this fact is important as it represents a type of context regularization.

The utilization of the procedures outlined above for the determination of a zonation structure can be
achieved by following the procedure suggested by Chow and Anderssen (1991).
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Figure 4: The exact and estimated parameter versus frequencies forδ = 0.1 andδ = 0.05 for Scheme 2
with test functionvqs

Figure 5: The exact and estimated parameter versus frequencies forδ = 0.1 andδ = 0.05 for Scheme 2
test functionvcs
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