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Abstract: Inverse problems arise whenever one searches for unknown causes based on observation of
their effects. Such problems are usually ill-posed in the sense that their solutions do not depend contin-
uously on the data. In practical applications, one never has the exact data; instead only noisy data are
available due to errors in the measurements. Thus, the development of stable methods for solving inverse
problems is an important topic.

In the last two decades, many methods have been developed for solving nonlinear inverse problems. Due
to their straightforward implementation and fast convergence property, more and more attention has been
paid on Newton-type regularization methods including the general iteratively regularized Gaus-newton
methods and the inexact Newton regularization methods.

The iteratively regularized Gauss-Newton method was proposed by Bakushinski for solving nonlinear
inverse problems in Hilbert spaces, and the method was quickly generalized to its general form. These
methods produce all the iterates in some trust regions centered around the initial guess. The regularization
property was explored under either a priori or a posteriori stopping rules. We will present our recent
convergence results when the discrepancy principle is used to terminate the iteration.

The inexact Newton regularization methods was initiated by Hanke and then generalized by Rieder to
solve nonlinear inverse problems in Hilbert spaces. In contrast to the iteratively regularized Gauss-
Newton methods, such methods produce the next iterate in a trust region centered around the current
iterate by regularizing local linearized equations. An approximate solution is output by a discrepancy
principle. Although numerical simulation indicates that they are quite efficient, for a long time it has
been an open problem whether the inexact Newton methods are order optimal. We will report our recent
work and confirm that the methods indeed are order optimal.

In some situations, regularization methods formulated in Hilbert space setting may not produce good
results since they tend to smooth the solutions and thus destroy the special feature in the exact solution.
On the other hand, many inverse problems can be more naturally formulated in Banach spaces than in
Hilbert spaces. Therefore, it is necessary to develop regularization methods in the framework of Banach
spaces. By making use of duality mappings and Bregman distance we will indicate how to formulate
some Newton-type methods in Banach space setting and present the corresponding convergence results.

Keywords: Nonlinear inverse problems, the iteratively regularized Gauss-Newton methods, the inexact
Newton methods, discrepancy principle, convergence, order optimality
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1 INTRODUCTION

Nonlinear inverse problems arise from many practical applications that include parameter identifications
in partial differential equations, inverse scattering problems, tomographies, and biomedical imaging and
so on. Mathematically, a nonlinear inverse problem usually can be formulated as the problem of finding
a solution x† of the operator equation

F (x) = y, (1)

where F : D(F ) ⊂ X 7→ Y is a Fréchet differentiable nonlinear operator between two Banach spaces X
and Y with domain D(F ).

Inverse problems are usually ill-posed in the sense that their solutions do not depend continuously on the
data. In practical applications, one never has exact data, but only noisy data are available due to errors
in the measurements. Let yδ be some noisy data satisfying ∥yδ − y∥ ≤ δ with a given small noise level
δ > 0. In order to obtain a stable approximation to x† from yδ , one has to use regularization methods.

Many regularization methods have been developed for solving nonlinear inverse problems. One of the
well-known methods is Tikhonov regularization which defines the regularized solution as the minimizer
of the minimization problem

min
x∈D(F )

{∥F (x)− yδ∥2 + α∥x− x0∥2} (2)

The convergence properties as well as a posteriori rules for choosing the regularization parameter α have
been considered extensively, see Engl, Kunisch and Neubauer (1989), Scherzer, Engl and Kunisch (1993),
Jin and Hou (1999) and Tautenhahn and Jin (2003). Since the functional in (2) is in general non-convex,
additional effort is required to find a minimizer which makes Tikhonov regularization rather expensive.

Due to their straightforward implementation and fast convergence property, Newton type methods be-
comes more and more popular for solving nonlinear inverse problems. In this survey, we will focus on
two types of Newton methods: the general iteratively regularized Gauss-Newton methods and the inexact
Newton methods. We will give the detail description on these methods and present recent relevant results
on their convergence properties.

2 NEWTON-TYPE METHODS IN HILBERT SPACES

In this section we assume that both X and Y are Hilbert spaces and use F ′(x) to denote the Fréchet
derivative of F at x ∈ D(F ). In order to describe the Newton type methods, we start with an initial guess
x0 ∈ D(F ). Assume that xn is the current iterate, we replace F (x) by its linearization around xn and
obtain from (1) the the approximate equation

F ′(xn)(x− xn) = yδ − F (xn). (3)

If F ′(xn) has bounded inverse, the usual Newton method defines the next iterate by solving (3) for x. For
nonlinear inverse problems, however, F ′(xn) in general is not invertible. One should apply regularization
methods to (3) or its variant to produce the next iterate.

2.1 The general iteratively regularized Gauss-Newton methods

In order to formulate this type of Newton methods, we rewrite (3) as

F ′(xn)(x− x0) = yδ − F (xn) + F ′(xn)(xn − x0). (4)

We take a sequence of positive numbers {αn} satisfying

αn > 0, 1 ≤ αn

αn+1
≤ r and lim

n→∞
αn = 0 (5)

for some constant r > 1. Letting {gα} be a family of spectral filter functions and applying the corre-
sponding linear regularization method defined by {gα} to (4), it leads to the general iteratively regularized
Gauss-Newton methods

xn+1 = x0 − gαn (T ∗
nTn))T

∗
n

(
F (xn)− yδ − Tn(xn − x0)

)
, (6)

386



Q. Jin, Newton-type regularization methods

where Tn := F ′(xn) and T ∗
n denotes the adjoint of Tn. The function {gα} in (6) can be chosen in

various ways to produce various iterative methods. For the function gα(λ) = 1/(α+ λ) arising from the
Tikhonov regularization, (6) becomes

xn+1 = xn − (αnI + T ∗
nTn)

−1 (
T ∗
n(F (xn)− yδ) + αn(xn − x0)

)
,

which is the iteratively regularized Gauss-Newton method of Bakushinskii (1992). For the function
gα(λ) = [1 − (1 − λ)[1/α]]/λ arising from the linear Landweber iteration, where [1/α] denotes the
largest integer not greater than 1/α, the method (6) becomes

un,0 := x0,

un,j+1 := un,j − T ∗
n

(
F (xn)− yδ − Tn(xn − un,j)

)
, 0 ≤ j ≤ [1/αn]− 1,

xn+1 := un,[1/αn],

For other different choice of {gα}, one may consult Kaltenbacher (1997) and Jin and Tautenhahn (2009).

When used to solve ill-posed inverse problems, iterative methods in general show the semi-convergence
property. Therefore, the iteration must be terminated properly. Considering the practical applications, it
is necessary to use the a posteriori information, i.e. all available data during computation, to choose the
stopping index of iteration yielding order optimal convergence rates. The discrepancy principle

∥F (xnδ
)− yδ∥ ≤ τδ < ∥F (xn)− yδ∥, 0 ≤ n < nδ, (7)

where τ > 1 is a given number, is a well-known stoping rule and has been applied successfully to
regularization methods for linear ill-posed problems. This principle outputs an integer nδ and hence an
approximate solution xnδ

. By establishing the key inequality

∥xnδ
− x†∥ . ∥xn − x†∥+ 1

√
αn

(
∥F (xnδ

)− yδ∥+ δ
)
, n ≥ nδ

connecting the error terms with the discrepancy, the convergence behavior of xnδ
to x† has been analyzed

carefully in Jin and Tautenhahn (2009) where the main results can be summarized roughly as follows.

Theorem 1. Let τ > 1 and let {αn} satisfies (5). If F ′ satisfies the Lipschitz condition

∥F ′(x)− F ′(z)∥ ≤ L∥x− z∥, ∀x, z ∈ Bρ(x
†) ⊂ D(F ), (8)

then, for a large class of spectral filter functions gα, the method (6) and the discrepancy principle (7)
define an order optimal regularization method for each 1/2 ≤ ν ≤ ν̄ − 1/2, i.e.

∥xnδ
− x†∥ ≤ Cν∥ω∥1/(1+2ν)δ2ν/(1+2ν)

if x0 − x† satisfies the source condition x0 − x† = (F ′(x†)∗F ′(x†))νω for some ω ∈ X and 1/2 ≤ ν ≤
ν̄ − 1/2. where ν̄ ≥ 1 denotes the qualification of {gα}.

Moreover, if F satisfies the stronger condition that there exist constants K0 and K1 such that

∥[F ′(x)− F ′(z)]w∥ ≤ K0∥x− z∥∥F ′(z)w∥+K1∥F ′(z)(x− z)∥∥w∥ (9)

for x, z ∈ Bρ(x
†) ⊂ D(F ) and w ∈ X , then the method is also order optimal for 0 < ν ≤ 1/2 and

xnδ
→ x† as δ → 0 without any source condition.

The discrepancy principle (7) has been also considered in Blaschke, Neubauer and Scherzer (1997) for
the iteratively regularized Gauss-Newton method of Bakushinskii; the number τ in (7), however, was
required to be sufficiently large. It is worthy to mention that Theorem 1 requires only τ > 1 which is
significant in practical applications.

There are other stopping rules proposed for the general iteratively regularized Gauss-Newton methods;
for instance, a variant of the discrepancy principle has been considered in Kaltenbacher (1998), a variant
of the rule in Scherzer, Engl and Kunisch (1993) has been adapted in Jin (2000), and a Lepskij-type
stopping rule has been proposed in Bauer and Hohage (2005).
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2.2 Inexact Newton methods

Motivated by the inexact Newton methods in Demo, Eisenstat and Steihaug (1982) for well-posed prob-
lems, Hanke proposed his regularzing Levenberg-Marquardt scheme in Hanke (1997) for solving non-
linear inverse problems. The idea was then generalized in Rieder (1999) to introduce a general class of
inexact Newton regularization methods, see also Lechleiter and Rieder (2010).

Every inexact Newton method consists of two components: an outer Newton iteration and an inner
scheme providing increments by regularizing the local linearized equation. An approximate solution is
output by a discrepancy principle. To be more precise, the method starts with an initial guess x0 ∈ D(F ).
Assume that xn is a current iterate, one may apply any regularization scheme to the linearized equation
(3) to produce a family of regularized approximations {xn(t)}. One may choose tn to be the smallest
number tn > 0 such that

∥yδ − F (xn)− F ′(xn)(xn(tn)− xn)∥ ≤ µ∥yδ − F (xn)∥ (10)

for some preassigned value 0 < µ < 1. The next iterate is then updated as xn+1 := xn(tn). The outer
Newton iteration is terminated by the discrepancy principle (7) for some given number τ > 1. This
outputs an integer nδ and hence xnδ

which is used to approximate the exact solution x†.

The convergence rates of inexact Newton regularization methods have been considered in Rieder (1999)
and Rieder (2001). However, only suboptimal result has been derived. It is a long-standing question
whether the inexact Newton regularization methods are order optimal. Important progress has been made
recently in Hanke (2010) where the regularizing Levenberg-Marquardt scheme is proved to be order
optimal. In Jin (2011b) we considered the inexact Newton regularization methods in which the inner
scheme defines

xn(t) = xn + gt (F
′(xn)

∗F ′(xn))F
′(xn)

∗ (yδ − F (xn)
)

with the spectral filter functions

gt(λ) =

[t]−1∑
j=0

(1− λ)j ,

[t]∑
j=1

(1 + λ)−j ,
1

λ

(
1− e−tλ

)
,

(
1

t
+ λ

)−1

(11)

arising from Landweber iteration, the implicit iteration, the asymptotic regularization, and Tikhonov
regularization respectively, and obtained the order optimality which is contained in the following result.

Theorem 2. Assume that F is properly scaled so that ∥F ′(x)∥ ≤ Θ < 1 for all x ∈ Bρ(x
†) ⊂ D(F )

and satisfies the Newton-Mysovskii condition, i.e. there exists K0 ≥ 0 such that

∥[F ′(x)− F ′(z)]h∥ ≤ K0∥x− z∥∥F ′(z)h∥, ∀h ∈ X and x, z ∈ Bρ(x
†).

Let τ > 2 and 0 < µ < 1 be such that τµ > 2, and let x0 ∈ Bρ(x
†). If K0∥x0 − x†∥ is small, then the

above inexact Newton regularization methods are well-defined and terminate after nδ = O(1 + | log δ|)
iterations. If, in addition, x0 − x† = (F ′(x†)∗F ′(x†))νω for some ω ∈ N (F ′(x†))⊥ ⊂ X and 0 < ν ≤
1/2, then there holds

∥xnδ
− x†∥ ≤ C∥ω∥1/(1+2ν)δ2ν/(1+2ν)

for some constant C independent of δ and ∥ω∥.

This theorem extends the order optimality result in Hanke (2010) to a general class of inexact Newton
regularization methods. These methods have been considered also in Hilbert scales in Jin (2011b). As
far as the convergence of these methods without source conditions be concerned, it has been proved to be
true for the exact data case in Lechleiter and Rieder (2010); however, it remains open for the noisy data
case.

One may consider the above methods with {tn} given a priori. This has the advantage to save the effort to
compute tn in some situations. To be more general, we formulate such methods in Hilbert scales which
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consists of a family of Hilbert spaces {Xr}r∈R induced by a densely defined self-adjoint strictly positive
linear operator L in X , where each Xr is the completion of ∩∞

k=0D(Lk) with respect to the Hilbert space
norm ∥x∥r := ∥Lrx∥X . These methods takes the form

xn+1 = xn − gtn
(
L−2sF ′(xn)

∗F ′(xn)
)
L−2sF ′(xn)

∗ (F (xn)− yδ
)
, (12)

where s ∈ R is a preassigned number and {tn} is a sequence of positive numbers satisfying

sn+1 ≤ c0sn and tn ≥ c1, n = 0, 1, · · · (13)

for some c0 > 1 and c1 > 0, where sn =
∑n

j=0 tj . The spectral filter functions {gt} can be chosen in

various ways. If we choose gt(λ) =
∑[t]−1

j=0 (1− λ)j with tn = 1 for all n, then (12) with s = 0 becomes
the nonlinear Landweber iteration (see Hanke, Neubauer and Scherzer (1995))

xn+1 = xn − F ′(xn)
∗ (F (xn)− yδ

)
,

which is known to be a slow convergent method. The flexibility in choosing {tn} can reduce significantly
the computational work by computing more cheap steps in each inner iteration.

The following order optimality result has been proved in Jin and Tautenhahn (2011) when the method
(12) is terminated by the discrepancy principle (7).

Theorem 3. Let F satisfy the following conditions:

(a) There exists a ≥ 0 and 0 < m ≤ M < ∞ such that m∥h∥−a ≤ ∥F ′(x)h∥ ≤ M∥h∥−a for all
h ∈ X and x ∈ Bρ(x

†);

(b) ∥F ′(x)L−s∥X→Y ≤ 1 for all x ∈ Bρ(x
†), where s ≥ −a;

(c) There exist 0 < β ≤ 1, 0 ≤ b ≤ a and K0 ≥ 0 such that

∥F ′(x)∗ − F ′x†)∗∥Y→Xb
≤ K0∥x− x†∥β , x ∈ Bρ(x

†).

Let τ > 1 and let {tn} satisfy (13). If x0 − x† ∈ Xµ for some (a − b)/β < µ ≤ b + 2s, then, for the
functions {gt} given by (11), the methods (12) coupled with the discrepancy principle (7) are well-defined,
and for all r ∈ [−a, µ] there holds

∥xnδ
− x†∥r ≤ C∥x0 − x†∥(a+r)/(a+µ)

µ δ(µ−r)/(a+µ).

3 NEWTON-TYPE METHODS IN BANACH SPACES

In this section we consider equation (1) with F being a nonlinear operator between two Banach spaces X
and Y . We use X∗ to denote the dual space of X and use ⟨x∗, x⟩ to denote the dual pair for x ∈ X and
x∗ ∈ X∗. We will assume that X is uniformly covex and uniformly smooth, where X is called uniformly
convex if its modulus of convexity

δX(ϵ) := inf {2− ∥x+ x̄∥ : ∥x∥ = ∥x̄∥ = 1, ∥x− x̄∥ ≥ ϵ}

satisfies δX(ϵ) > 0 for all 0 < ϵ ≤ 2, while X is called uniformly smooth if its modulus of smoothness

ρX(s) := sup {∥x+ x̄∥+ ∥x− x̄∥ − 2 : ∥x∥ = 1, ∥x̄∥ ≤ s}

satisfies lims→0
ρX(s)

s = 0. For each 1 < p < ∞ the set-valued mapping Jp : X → X∗ defined by

Jp(x) := {x∗ ∈ X∗ : ∥x∗∥ = ∥x∥p−1 and ⟨x∗, x⟩ = ∥x∥p}

is called the duality mapping in X with gauge function t → tp−1. Since X is uniformly smooth and uni-
formly convex, Jp, for each 1 < p < ∞, is single valued, continuous, and strictly monotone. Associated
with Jp, we can introduce the Bregman distance

∆p(x̄, x) =
1

p
∥x̄∥p − 1

p
∥x∥p − ⟨Jp(x), x̄− x⟩
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which is always nonnegative but not necessarily to be a metric.

In Jin (2011c) we generalized the regularizing Levenberg-Marquardt scheme in Hanke (1997) to the
Banach space setting. Let 1 < p, r < ∞ and x0 ∈ D(F ) be an initial guess. Then, based on the linearized
equation (3) around the current iterate xn, we consider for each α > 0 the convex minimization problem

min
x∈X

{
1

r
∥yδ − F (xn)− F ′(xn)(x− xn)∥r + α∆p(x, xn)

}
, (14)

whose unique minimizer is denoted by xn(α). We then define αn > 0 to be the root of the equation

∥yδ − F (xn)− F ′(xn)(xn(α)− xn)∥ = µ∥yδ − F (xn)∥ (15)

for some 0 < µ < 1 and define xn+1 := xn(αn). The iteration is then terminated by the discrepancy
principle (7) which outputs an integer nδ . The convergence of xδ

nδ
to a solution of (1) has been established

in Jin (2011c).

Theorem 4. Let F satisfy the tangent cone condition

∥F (x̄)− F (x)− F ′(x)(x̄− x)∥ ≤ η∥F (x̄)− F (x)∥, x̄, x ∈ Bρ(x
†) ⊂ D(F ) (16)

with 0 ≤ η < 1/3. Let η < µ < 1 − 2η and τ > (1 + η)/(µ − η). Then the regularizing Levenberg-
Marquardt scheme in Banach spaces is well-defined and terminates after nδ < ∞ iteration with nδ =
O(1 + | log δ|). Moreover xδ

nδ
converges to a solution of (1) as δ → 0.

The generalization of the nonlinear Landweber iteration to Banach space setting has been done in
Kaltenbacher, Schöpfer and Schuster (2009) and Hein and Kazimierskii (2010). By borrowing the idea
from Rieder (1999) we proposed in Jin (2011d) an inexact Newton-Landweber iteration in Banach spaces
to accelerate the method by computing more cheap steps in each inner iteration. Let 1/p+ 1/p∗ = 1, let
J∗
p∗ : X∗ → X be the duality mapping in X∗ with gauge function t → tp

∗−1, and let jr : Y → Y ∗ be a
single-valued selection of the duality mapping with gauge function t → tr−1. Let xn be a current iterate,
the method in Jin (2011d) first constructs a sequence {un,k} ⊂ X∗ iteratively by setting un,0 = 0 and

un,k+1 = un,k + ωn,kT
∗
njr (y − F (xn)− Tn(zn,k − xn)) ,

where ωn,k is a positive number and zn,k = J∗
p∗ (Jp(xn) + un,k). Let kn be the first integer such that

∥y − F (xn)− Tn(zn,k − xn)∥ ≤ µ∥y − F (xn)∥,

where 0 < µ < 1 is a preassigned number, the next iterate is defined to be xn+1 := zn,kn . The method is
then terminated by the discrepancy principle. Under suitable choice of ωn,k, the method is shown to be
strong convergent for the exact data case and weak convergent for the noisy data case.

Finally we want to mention that the iteratively regularized Gauss-Newton method of Bakushinskii
has been generalized to Banach space setting in Kaltenbacher, Schöpfer and Schuster (2009) and
Kaltenbacher and Hofmann (2010) where the convergence and rates of convergence have been derived
under suitable conditions.
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