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Abstract: This paper presents the development of a numerical algorithm for the simulation of closely
coupled fluid-structure interaction (FSI) systems. The particular FSI system investigated in this work
involves a high-Reynolds number flow over a single-sided compliant wall section between rigid baffles
upstream and downstream. This system is a fundamental analogue of many complex FSI systems found
in nature ranging from biomedical applications to drag-reduction using compliant coatings. The present
study compares the efficacy of various numerical techniques to resolve the fully-coupled, non-linear FSI
dynamics. Of particular interest is the resolution of coupled dynamics at fluid-structure density ratios of
approximately unity where typical segmented solution techniques tend to have difficulties. Numerical
techniques for resolving these tightly coupled dynamics are crucial to the development of generalized
workable grid-free computational methods based on boundary-element and discrete vortex formulations.

The flow in this study is represented numerically as an ideal or potential axial flow, however it is important
to note that the numerical schemes developed are equally applicable to rotational and viscous flow fields.
The flow over the non-linear deforming surface is handled by a boundary-element method formulation of
the Laplace equation. The structural dynamics are represented numerically by a finite-difference formu-
lation of the Euler-Bernoulli beam equation. Various algorithms for the coupling of the fluid and structure
equations will be tested for their numerical efficiency, stability and overall accuracy. The particular al-
gorithms of note involve the semi-implicit, the linearised fluid inertia and the fully-implicit coupling
methods.

The compliant-wall is modelled using a one-dimensional (1D), non-linear, Euler-Bernoulli beam model,
with the non-linearity captured through an induced tension term. We look at the transient response ob-
tained from the initial value problem, with the solution obtained numerically through an implicit time
stepping scheme and the finite difference method (FDM). In all cases, the O(n2) computational complex-
ity that is typical with the numerical solution of a boundary-element formulation is mitigated through the
use of a fast-multipole method (FMM) that reduces the complexity to O(n log n). Thus, the numerics
are handled in such a way that system matrices are not explicitly formed and thereby avoiding issues of
associated memory storage.

The results validate well against previously published experimental and numerical work. They show that
the semi-implicit method is an efficient computational technique for the solution of low density-ratio
FSI problems, however it fails to achieve convergence at high density ratios. The fully-implicit coupling
method achieved a good convergence and efficiency in the case of high density ratio models, however
it’s computational cost was higher than the semi-implicit method, but still lower than the coupling of
the linearised fluid inertia term. Further work in this area will involve using these results to facilitate
modelling fluid-structure systems that incorporate the dynamics of full viscous and rotational flow.

Keywords: boundary element method, compliant wall, fast multipole method, fluid-structure interaction,
Newton-Krylov, matrix-free
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1 INTRODUCTION AND BACKGROUND

This paper presents the development and comparison of algorithms suitable for the numerical simulation
of the Fluid-Structure Interaction (FSI) system illustrated by Fig. 1 in which an ideal axial flow interacts
with a deforming flexible panel, or compliant wall. This system has a long history of investigation in aero-
/hydro-elasticity often being described as the problem of panel flutter because with increasing flow speed
the panel undergoes divergence, or buckling, instability due to the fluid forcing that is replaced at higher
flow speeds by violent and often destructive flutter instability. Theoretical studies have largely been based
on linearised models by assuming low-amplitude disturbances of the wall while more complex fluid-flow
models that include viscous effects require the assumption of a panel of infinite length in a normal-mode
decomposition, boundary-value, formulation. A complete model of the fully coupled system will only
be achieved using computational methods. Progress has been made in this regard; for example Lucey
et al. [1997] simulated nonlinear dynamics using ideal flow while low-amplitude disturbances in viscous
channel flow with a compliant insert have been simulated by Davies and Carpenter [1997] and for large
amplitude deformations by Luo et al. [2008] using grid-based methods that are viable at relatively low
Reynolds numbers.

The overall aim of the present work is to develop a versatile workable grid-free computational model for
high Reynolds-number flows in the system using a combination of discrete-vortex method (DVM) for
viscous boundary-layer effects in the flow, boundary-element method (BEM) for the irrotational compo-
nent of the flow and finite-difference method (FDM) for the wall dynamics. As an essential step towards
this aim, the specific thrust of the present paper is the development and assessment of stable, accurate
and efficient time-stepping algorithms for the simulations. To facilitate this, we work with an ideal (in-
finite Reynolds number) flow but our design is framed by the requirement that the resulting algorithms
can equally incorporate the DVM model of viscous effects and flow rotationality. In what follows, we
first present an efficient scheme for the FDM solution of the wall dynamics and from that build the
fully-coupled fluid-loaded system using the BEM. We then present three approaches to the time-stepping
solution of the system’s governing equation. In closing we comparatively summarise the merits and lim-
itations of each providing recommendations of their utility particularly with respect to the fluid-to-solid
density ratio of the system being studied.

2 WALL MODEL

Mean−flow U∞

Perturbed flow profile

Downstream/exit
flow profile

Upstream/approaching
flow profile

Rigid wall
upstream

Rigid wall
downstream

Compliant wall section

Figure 1. Schematic of the FSI model.

For the compliant-wall model, as shown in Fig. 1, we use the 1D, nonlinear, Euler-Bernoulli-Beam
model which is presented in Lucey et al. [1997]. Nonlinearity is captured through an induced tension
term that results from elongation caused by curvature in the wall. The governing differential equation for
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the vertical wall motion, η = η(x, t), is given by,

ρh
∂2η

∂t
+B

∂4η

∂x4
− TI

(
∂η

∂x

)
∂2η

∂x2
= F (x, t), (1)

where ρ is the wall density, h is the thickness and F (x, t) is the force applied at the wall’s surface. In
addition, B denotes the flexural rigidity of the plate and TI is the induced tension coefficient given by,

B =
Eh3

12 (1 − vp2)
, TI =
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L (1 − vp2)

∫ L

0

√1 −
(
∂η

∂x

)2

− 1

dx, (2)

where vp refers to Poisson’s ratio, E is the elastic modulus and L is the length of the undeformed wall.

A solution to the system is achieved numerically by discretising the continuous wall intoN nodes of mass,
uniformly spaced by ∆x in the horizontal direction. By keeping the separation of the nodes uniform we
can apply second-order central-difference approximations [Trefethen, 1996] to all spatial differentials.
End-joints are chosen to be hinged and implemented numerically through the addition of phantom nodes
at the wall ends.

In this work, we look at the transient response obtained from the initial value problem where time inte-
gration is achieved through a second-order, implicit, trapezoidal stepping method. The use of an explicit
time-stepping method has been avoided as the numerical stiffness of the equations of motion results in the
convergence rate and stability of the problem being highly dependent on wall discretisation and time-step
sizes. An increase in spatial discretisation requires a much larger increase in time discretisation to ensure
numerical stability, well beyond the necessity for solution accuracy. By using an implicit method, relative
time-step sizes no longer impact the numerical stability of the solution.

2.1 Implicit solution method

The trade-off with using an implicit method is that to obtain a solution we must find the roots of the
system equations in the form f(η̈) = 0. Where the system equations are analytically defined before hand,
methods such as the Newton-Raphson (NR) approach can be used, however the inclusion of nonlinear
tension makes obtaining analytical forms of the derivative (or Jacobian, [J ], for systems of equations)
impossible. While numerical approximation and inversion of the Jacobian matrix is possible through
finite-difference and Gaussian-elimination, with increasing levels of wall discretisation and the Jacobian’s
square shape (n×n), these operations becomes prohibitively expensive on the order ofO(n2) andO(n3)
respectively.

A better alternative for large systems of nonlinear equations is the Newton-Krylov (NK) method [Knoll
and Keyes, 2004]. This is based upon the use of a finite-difference approximation (typically first-order)
to the Jacobian-vector product used in the NR. The advantage of this formulation is that one can use
a Krylov subspace method, such as the Generalised Mean Residual method (GMRES), to iteratively
determine the vector product. This method is suited to large systems of nonlinear equations because
only system function (f ) evaluations are required which allows the whole scheme to be conducted in a
matrix-free manner.

However, for good performance of any iterative Krylov method, the system of equations must be well
conditioned. To achieve this we must develop a pre-conditioner that can be used in the Krylov calculations
to provide a good approximation for the inverse of the Jacobian matrix. Here the problem lies in the fact
that; i) the Jacobian does not explicitly exist, and obtaining it would be numerically expensive (O(n2)),
ii) even with a fully defined Jacobian matrix, its direct inversion is numerically expensive (O(n3)), and
iii) the preconditioner must be able to reduce the total number of Kyrlov and Newton iterations.

The solution proposed in this paper is a static pre-conditioner that is obtained by generating an approxi-
mate Jacobian matrix through finite differences. This is applied on a sparsifying stencil that ignores the
influence of elements outside of a 2 element radius, which is suitable due to the diagonal dominance of the
Jacobian. The end result is a sparse, diagonal banded matrix that approximates the Jacobian; however as
opposed to direct inversion, we use the Incomplete-LU Decomposition method to provide an approximate
inverse to this matrix.
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3 FLUID-STRUCTURE INTERACTION

The Boundary Element Method (BEM) is a technique that has been applied to the compliant-wall
potential-flow FSI problem before in Lucey et al. [1997] and for nonlinear complaint deformations in
Pitman [2007] with good success. We use this method to achieve the fluid-wall coupling by utilising
source/sink panels that follow the wall motion and are located between the mass nodes. While the back-
ground of the BEM is not discussed here, one should see Katz and Plotkin [1991] for the general method
and Kapor et al. [2010] for examples of applications to the present configuration.

Summarised, the key features that make the BEM ideal for the present problem are; i) it’s ability to model
the entire flow field using a surface integral method, ii) it’s mesh-free nature allows easy deformation of
the fluid-wall boundary, and iii) pressure forces at the fluid-wall boundary can be calculated with relative
ease.

Where the fluid-flow perturbs under the wall motion it also offers a reactionary response back onto the
wall through its corresponding change in pressure. To determine the pressure in the flow field one can
apply the unsteady Bernoulli equation for potential-flow which can be coupled to the wall through the
forcing term, F (x, t), in Equation 1 as,

F (x, t) = −∆p (η̈, η̇, η) = ρf

(
−U

2
∞
2

+
∂φ

∂t
+
U2 + V 2

2

)
, (3)

where ρf is the fluid density, U∞ is the undisturbed velocity seen in Fig. 1 and the time differential is ob-
tained by a standard, second-order backwards difference approximation. φ, U and V are the perturbation
velocity potential, horizontal and vertical velocities respectively in the fluid at position x and are obtained
from the BEM at the node midpoints using,

[φ] = [Iφ][σ] , [U ] = [IU ][σ] , [V ] = [IV ][σ]. (4)

Here [σ] denotes the vector of source/sink panel strengths of sizeN×1 and [I∗] denotes the corresponding
influence matrix of sizeN×N . The influence matrices are purely a function of panel angles and positions
which change in time. As it is undesirable to form and manipulate large square matrices, due to their
O(n2) complexity, the Fast Multipole Method (FMM) [Greengard and Rokhlin, 1987] is used to perform
the vector product in an efficient O(n log n) scheme, previously presented in Kapor et al. [2010].

While the FMM may offer a fast matrix-vector product, this is only possible once the panel strength
vector ([σ]) is known. To determine the strengths we solve the set of equations that enforce the no-normal
velocity at the centre of each panel,

0 = [Iv][σ] + [Vnorm] (5)

[σ] = [Iv]
−1([−U∞ sin θp −

∂ηp
∂t

cos θp]), (6)

where Iv is the square influence matrix made by the panel-normal component of the velocity. From this
relationship the changing wall motion impacts the flow-field in three ways via; i) the position affecting
the relative angle of the panel to the mean-flow direction, ii) the curvature in the panel-normal matrix,
and iii) directly through the coupled wall velocity. As opposed to actually solving for the inverse of the
normal-influence matrix, we again use the GMRES for greater efficiency and to abide by the matrix-free
theme of the model. With the GMRES we also utilise the FMM for the matrix-vector product ([Iv][σ]) to
avoid the costs of the direct O(n2) calculation.

Rewriting the full potential-flow FSI system of equations by substituting Equation 3 into Equation 1 we
have,

ρh
∂2η

∂t2
+B

∂4η

∂x4
− TI

(
∂η

∂x

)
∂2η

∂x2
= ρf

(
−U

2
∞
2

+
∂φ

∂t
+
U2 + V 2

2

)
. (7)

3.1 Solution Method

The three components on the right hand side involve full (n× n) matrices which causes the evaluation of
the right hand side of Eqn. 7 to be very expensive. Dynamic calculation of these terms should be avoided
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in the implicit NK calculations as this would add an O(n2) component to the function (f ) calls, whereas
without it, all components are of order O(n). An alternative approach to a fully implicit coupling is to
use a semi-implicit coupling of the forcing function by,[

ρh
∂2η

∂t2
+B

∂4η

∂x4
− TI

(
∂η

∂x

)
∂2η

∂x2
+ ρf

U2
∞
2

− P ∗
]
t

=

[
ρf

(
∂φ

∂t
+
U2 + V 2

2

)
− P ∗

]
t∗
. (8)

Here we iterate between the implicit solution on the left hand side and semi-implicit correction on the
right hand side until t∗ = t. An additional P ∗ term has been included on both sides of the equation to act
as an optional conditioner that influences the overall complexity of the implicit coupling. The choice of
this term is complicated and must be discussed further.

No Conditioning. If we first provide no semi-implicit conditioning we have,

P ∗ = P1 = 0. (9)

This provides the simplest form of coupling with the NK on the left hand side solving the same as it
would in vacuo, with the full O(n2) fluid calculations now restricted to each semi-implicit iteration.

Linearised Inertia Conditioning. By looking at the order of the terms on both sides of the system
equation it is seen that a large influence in the fluid-wall coupling is the unsteady pressure term, ∂φt

∂t . By
performing a linear analysis [Pitman, 2007] we can see that for ’heavy’ fluids the linearised fluid inertia
is the component with the greatest influence on wall acceleration. It is beneficial to shift this term to the
left hand side of the equation to be solved implicitly and then allowing the nonlinear components to be
applied semi-implicitely. This is achieved by setting,

P ∗ = P2 = 2ρf [Iφ]

[
∂ηp
∂t

]
. (10)

The addition of this coupling allows the semi-implicit pressure on the right hand side to be more resilient
to changes in the wall acceleration. While this results in faster convergence and higher numerical stability,
it does come at a cost, with evaluations of [Iφ] being required for every call of f . The change of f also
requires modification of the Jacobian preconditioner, but due to the diagonal nature of P2 this is a simple
inclusion in the existing method.

Full Potential-Flow Implicit Coupling. The third option is to utilise the fully coupled, nonlinear,
potential-flow as the conditioner by,

P ∗ = P3 = ρf

(
∂([Iφ][σ])

∂t
+

([IU ][σ])2 + ([IV ][σ])2

2

)
. (11)

Here the time differential is solved as previously with a second-order backward difference method and
the strength (σ) is solved via GMRES and the FMM to satisfy the no-flux boundary condition. The
advantage of this method is that the right-hand terms cancel, leaving the nonlinear system fully coupled
to the fluid implicitly, requiring no semi-implicit iterations. The disadvantage is that the Krylov iterations
are now even more complicated over the linearised version, requiring an additional fluid field calculation
(FMM) and an inverse matrix-vector product (GMRES). In addition, the inverse Jacobian preconditioner
to the NK is now dense, however as the fluid matrices are still diagonally dominant it responds well to
the existing sparsification scheme.

4 ILLUSTRATIVE NUMERICAL RESULTS

For validation purposes, we provide an illustrative example of the FSI of air flow over an elastic rubber
type wall (ρf/ρ = 1.17 × 10−3), with the flow speed set to ensure energy-stable, nonlinear, divergence
instability (Λ = 202) [Lucey et al., 1997]. Fig. 2(a) shows snapshots of the wall positions through time
using the P1 scheme, with snapshots taken every 1.6×10−3s over a single oscillation. Fig. 2(b) shows the
vertical position of the central wall node through time for all three coupling methods, clearly illustrating
good agreement and the nonlinear oscillatory behaviour. For this case, conditioning scheme P1 computed
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(a) Wall position transient snapshots. (b) Wall midpoint trace for P1(line), P2(triangle) and
P3(circle) schemes.

Figure 2. Divergent FSI (Λ = 202)simulation of air flow over a rubber wall (ρf/ρ = 1.17 × 10−3).

Figure 3. Wall midpoint trace for P3 with a divergent FSI (Λ = 206) simulation of water flow over
aluminium (ρf/ρ = 3.7 × 10−1).

the fastest, where the wall-time taken to run the simulation on a standard desk-top computer (Intel Q9650
3.0GHz processor) was 505s, based on 50 discretised wall nodes. Schemes P2 and P3 took longer to
run for the same simulation parameters with wall-time taking 1820s and 1090s respectively. While this
may indicate that P1 should always be the selected method, this is only for a select set of density ratios
of approximately ρf/ρ < 10−2. For ratios higher than this, the P1 scheme fails to converge due to the
inherent numerical stiffness in the problem. By using P3 scheme, the case of water flow over aluminium
(ρf/ρ = 3.7 × 10−1) has been illustrated. This is a case where P1 cannot be used and P2 has not been
used due to its inferior performance.

5 SUMMARY AND RECOMMENDATIONS

We now summarise all three schemes and illustrate the different complexity resulting from each coupling
method. By taking into account Explicit coupling iterations (E), Newton iterations (N), Krylov iterations
(K), GMRES calls (G) and FMM calls (F) we arrive at Table 1. For each case the complexity of G and
F remain constant as they are functions of the wall elements (n). However E varies vastly (E1 > E2)
depending on the conditioning of the left and right hand side, with K increasing (K1 < K2 < K3) for
greater functional (f ) matrix density and N increasing (N1 < N2 < N3) for greater nonlinearity and
reducing accuracy of K.

When using P1 we offer no implicit coupling between the fluid and the wall. While Section 4 suggests
that this method is the fastest, it cannot be used effectively for all FSI systems. As the magnitude of
the unsteady pressure term is governed mainly by the fluid density, not time-step size, the convergence
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Table 1. Number of operations for different coupling P ∗

Method Left eval Right eval Total
P ∗1 E1(N1(K1)) E(G(F) + 2(F)) E1(N1K1 + F(G+2))
P ∗2 E2(N2(K2(F))) E2(G(F) + 3(F)) E2(F(N2K2 + G + 3))
P ∗3 N3(K3( G(F) + 2F)) 0 N3(K3(F(G + 2)))

behaviour of the P1 coupled system is reliant on the fluid-wall density ratio (ρf/ρ). When this is rel-
atively high, such as flows involving water or where the ratio is greater than approximately 10−2, this
method cannot converge on a solution due to the numerical stiffness involved with coupling the strong,
acceleration sensitive, inertial forces. For low ratios however, the inertial coupling is weak and we can
trade simpler NK calculations for small increases in E, with the solution remaining numerically stable.

When higher density ratios are required, P2 must be used at a minimum for numerical stability and offers
a good trade-off between the cost of the NK and the number of E calculations. This method excels in
cases where wall motion remains mildly nonlinear and where inertial forces drive the system dynamics.
For cases where E becomes too large, such as for highly nonlinear behaviour or where fluid elements
other than potential-flow were used that are vastly more expensive to calculate (such as with the DVM),
P3 coupling would be preferred. This would be aimed at reducing the number of E critically but would
only apply where a full potential-flow coupling offers a reasonable approximation to the real flow.
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