
Computational Fluid Dynamics using OpenCL –
a Practical Introduction

T Bednarz1, Luke Domanski2 and J A Taylor3

1 CSIRO Mathematics Informatics & Statistics, Sydney, Australia.
Email: tomasz.bednarz@csiro.au)

2 CSIRO Advanced Scientific Computing, Sydney, Australia
3 CSIRO Mathematics Informatics & Statistics, Canberra, Australia

Abstract: The main aim of the Computational Fluid Dynamics (CFD) simulations is to reconstruct the
reality of fluid motion and behaviour as accurately as possible in order to better understand the natural
phenomena under specified conditions. Ideally, general solutions can also cover different scales and
geometric configurations. Unfortunately, due to expensive algorithms, classic CFD codes most often
require long computational times to satisfy the convergence criteria. With the advent of high-performance
GPUs with massively-parallel multi-threaded architectures, basic CFD algorithms can now be implemented
to give results in near real-time. The current work will briefly review our existing explicit solver based on
finite difference methods, the derivation and discretisation of the mathematical model and equations,
through to GPU algorithm implementation. During presentation, several case studies computed using
CSIRO's CPU/GPU supercomputer cluster will be described and compared against well known analytical
and experimental solutions, i.e. natural convection, driven cavity, scaling analysis, magneto-thermal
convection, etc.

Keywords: Computational Fluid Dynamics, Simulations, Numerical Modelling

19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011
http://mssanz.org.au/modsim2011

608

Bednarz et al., Computational Fluid Dynamics using OpenCL – a Practical Introduction

1. INTRODUCTION AND MODEL EQUATIONS

Experiments with fluids are usually very expensive and many times not feasible, or require work in harmful
environments, etc. Therefore, in such cases, we’re trying to replace them with numerical modelling
whenever possible. Here comes Computational Fluid Dynamics (CFD) that aims to reconstruct the reality
of fluid motion and behaviour as accurately as possible in order to better understand the natural phenomena
under specified conditions. Ideally, general solutions can also cover different scales and geometric
configurations and should be with an agreement with equivalent experimental results.

Unfortunately, due to expensive algorithms, classic CFD codes most often require long computational times
to satisfy the convergence criteria. With the advent of high-performance GPUs with massively-parallel
multi-threaded architectures, basic CFD algorithms can now be implemented to give results in near real-
time. The algorithms used to solve these problems utilize GPU and in this case OpenCL. Presented results
demonstrate that GPU can be successfully used to accelerate fluid simulations. We have seen significant
gains in productivity and opportunity as a result of leveraging GPUs, being able to tackle computational
problems in which execution time was previously infeasible.

1.1. Model equations

In order to solve general incompressible thermo-fluids problems in Cartesian coordinate system, the Navier-
Stokes and energy equations can be defined as follows:


∇ ⋅


U = 0 (1)

D


U

Dt
= −C1


∇P + C2∇

2


U + C3(θ − C4) (2)

Dθ
Dt

= C5∇
2θ (3)

where


U is the velocity, t is the time, P is the pressure, θ is the temperature and coefficients C1 to C5 will
depend on a specific case considered. The same methodology can be applied to simulate wide range of
different fluid flows: pipe flows, force convections, magneto-thermal convection, scaling analysis,
exchange flows in reservoir model, mixing, fountain flows, bubble flow, step flows, heat exchangers,
ventilation problems, etc. For instance, if under the consideration is a square cavity heated from one vertical
wall and cooled from the opposite one with top and bottom walls kept adiabatic, those coefficients for
dimensionless solution are defined as follows:

C1 =1; C2 = Pr = ν
α

; C3 = Pr ⋅ Ra = ν
α

⋅ gβ (Δθ)l3

αν
; C4 = 0; C5 =1.0 (4)

where ν is the kinematic viscosity, α is the thermal diffusivity, g is the gravitational acceleration, β is the
thermal expansion coefficient, Δθ is the maximum temperature difference, l is the length of the cube, Pr is
the Prandl number describing ratio of momentum and thermal diffusivities and Ra is the Rayleigh number
associated with buoyancy driven flow describing strength of the convection.

2. NUMERICAL APPROACH

Those equations are approximated with finite difference equations and the HSMAC (Highly Simplified
Marker and Cell) method (Bednarz et al. 2005-2010, Hirt 1975) is used to iterate mutually the pressure and
velocity fields on staggered mesh/grid allocation system, see Figure 1. The inertial terms in momentum
equations are approximated using a third-order upwind UTOPIA scheme (Tagawa 1996). The absolute
convergence criteria for the numerical solutions are specified based on the residual sums of all conserved
quantities. If the residual sum is less than 10-6 for each conserved quantity, the equations are deemed to
have converged at a specific time step. The time-step is chosen to ensure numerical stability according to
the CFL condition. The numerical methods used in this work for simulation of natural convection have been
widely verified by co-workers, by both the numerical and the experimental investigations for closely related
problems (Bednarz et al. 2005-2010).

609

Bednarz et al., Computational Fluid Dynamics using OpenCL – a Practical Introduction

Figure 1. Staggered mesh grid allocations prevents possible pressure oscillations. Left: for 2-D cases all
scalar variables are defined in the centre of cells, and vector variables in at the centre of vertical and

horizontal cell faces accordingly. Right: grid for 3-D cases.

3. OPENCL IMPLEMENTATION

The numerical code is ported from CPU to GPU version using the OpenCL API, see references. This was
motivated by the need of improving computation speed, as in some cases, e.g. computation of single case of
boundary layer evolution (Bednarz et al. 2009) could take up to 12 hours on grid size 256x256. Therefore,
all critical parts of previously available CPU code are re-implemented in several OpenCL kernels that could
be executed by thousands simultaneous threads by a GPU. Figure 2 shows the flow chart of our HSMAC-
OpenCL solver. As seen, the initialization part includes: reading initial configuration files describing
geometry and parameters of the problem to be computed, allocating memory for all field variables
(pressure, velocity components, temperatures and spatial coordinates), preparing boundary conditions flags
(to mark regions where the boundaries are located and what is their type). Once that’s done, the OpenCL is
initialized, proper compute device is attached to its context and the CL program is compiled. Also the
device memory buffers are created and filled with initial data.

Figure 2. Flow char of the OpenCL solver.

610

Bednarz et al., Computational Fluid Dynamics using OpenCL – a Practical Introduction

The solver / runtime execution of all OpenCL kernels is controlled by host device (CPU). The flow chart
shows two main loops: the outer loop, which is responsible for general time-step iterations and the inner
loop used for mutual iteration of velocity and pressure fields to satisfy the continuity equation, before
solving each energy equation time-step (Hirt 1975). For instance calculation of pressure and velocity
correction is done by execution of the kernel krnl_pressure_velocity_correction, calculation of energy
equation by krnl_energy, etc. In addition the interoperability feature of OpenCL with OpenGL can be used
to visualize the results while they are still under computation. After reaching final time step, all results can
be saved on disk for further analysis.

Figure 3 shows simplified code snippet of sample OpenCL kernel being used to calculate vertical
component of tentative velocity from momentum equation. Please notice, that all derivatives for vertical
velocity are calculated at the middle of top vertical cell edge. For simplicity of presentation, convection
acceleration is calculated using central approach. In real simulations, as mentioned UTOPIA was used for
accuracy and stability.

Figure 3. Simplified OpenCL kernel that calculates tentative, vertical velocity component from the
momentum equation.

4. RESULTS AND CONCLUSIONS

Figure 4 depicts total execution times to reach final time of t = 5 for natural convection simulations at Pr =
0.71 and Ra = 106 versus different grid sizes denoted in total cell numbers (product of grid sizes in X- and
Y-direction). These results show potential speed-ups that can be achieved using GPU compute devices.
Initial tests comparing GT 330M to Intel Core i7 showed average 30X speedup of GPU/CPU. Further,
comparing S2050 execution times to GT 330M, there was additional ~7-9X speedup (which is
approximately equivalent to the ratio of the number of streaming cores between those two GPUs). These
results are indication of what can be achieved when using OpenCL with today’s GPUs for solving explicitly
the Navier-Stokes equation for natural convection flows, i.e. obtaining converged results in few minutes
instead of 10-12 hours.

5. REFERENCES

Bednarz, T., Tagawa, T., Kaneda, M., Ozoe, H., and Szmyd, J.S. (2005) The convection of air in a cubic
enclosure with an electric coil inclined in general orientations, Fluid Dynamics Research, Vol. 36, No. 2,
pp. 91-106.

Bednarz, T., Lin, W., Patterson, J.C., Lei, C., and Armfield, S.W. (2009) Scaling for unsteady thermo-
magnetic convection boundary layer of paramagnetic fluids of Pr > 1 in microgravity conditions,
International Journal of Heat and Fluid Flow, Vol. 30, Issue 6, pp. 1157-1170.

611

Bednarz et al., Computational Fluid Dynamics using OpenCL – a Practical Introduction

Bednarz, T., Caris, C., and Taylor, J. (2010) A practical introduction to Computational Fluid Dynamics on
GPUs, GTC 2010, San Jose, USA, September 20-23.

Botella, O., and Peyret, R. (1998) Benchmark spectral results on the lid-driven cavity flow, Computers &
Fluids, Volume 27, Issue 4, Pages 421-433.

CSIRO GPU cluster: http://www.csiro.au/resources/GPU-cluster.html.
De Vahl Davis, G. (1983) Natural convection of air in a square cavity: a bench mark numerical solution,

International Journal of Numerical Methods in Fluids, Vol 3, pp 249-264.
Hirt, C.W., Nichols, B.D., and Romero, N. (1975) A numerical solution algorithm for transient fluid flow,

Los Alamos Scientific Laboratory, LA-5852.
OpenCL: http://www.khronos.org/opencl/
Tagawa, T., and Ozoe, H. (1996) Effect of Prandtl number and computational schemes on the oscillatory

natural convection in an enclosure, Numerical Heat Transfer A 30, 271-282.

Figure 4. Total execution times for S2050 and GT330M against number of computational cells and
converged temperature contours for Pr = 0.71 and Ra = 106 (left wall = heated, right wall = cooled).

612

