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Abstract: The main aim of the Computational Fluid Dynamics (CFD) simulations is to reconstruct the 
reality of fluid motion and behaviour as accurately as possible in order to better understand the natural 
phenomena under specified conditions. Ideally, general solutions can also cover different scales and 
geometric configurations. Unfortunately, due to expensive algorithms, classic CFD codes most often 
require long computational times to satisfy the convergence criteria. With the advent of high-performance 
GPUs with massively-parallel multi-threaded architectures, basic CFD algorithms can now be implemented 
to give results in near real-time. The current work will briefly review our existing explicit solver based on 
finite difference methods, the derivation and discretisation of the mathematical model and equations, 
through to GPU algorithm implementation. During presentation, several case studies computed using 
CSIRO's CPU/GPU supercomputer cluster will be described and compared against well known analytical 
and experimental solutions, i.e. natural convection, driven cavity, scaling analysis, magneto-thermal 
convection, etc.  
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1. INTRODUCTION AND MODEL EQUATIONS 

Experiments with fluids are usually very expensive and many times not feasible, or require work in harmful 
environments, etc. Therefore, in such cases, we’re trying to replace them with numerical modelling 
whenever possible. Here comes Computational Fluid Dynamics (CFD) that aims to reconstruct the reality 
of fluid motion and behaviour as accurately as possible in order to better understand the natural phenomena 
under specified conditions. Ideally, general solutions can also cover different scales and geometric 
configurations and should be with an agreement with equivalent experimental results.  

Unfortunately, due to expensive algorithms, classic CFD codes most often require long computational times 
to satisfy the convergence criteria. With the advent of high-performance GPUs with massively-parallel 
multi-threaded architectures, basic CFD algorithms can now be implemented to give results in near real-
time. The algorithms used to solve these problems utilize GPU and in this case OpenCL. Presented results 
demonstrate that GPU can be successfully used to accelerate fluid simulations. We have seen significant 
gains in productivity and opportunity as a result of leveraging GPUs, being able to tackle computational 
problems in which execution time was previously infeasible. 

1.1. Model equations 

In order to solve general incompressible thermo-fluids problems in Cartesian coordinate system, the Navier-
Stokes and energy equations can be defined as follows: 


∇ ⋅


U = 0   (1) 

D


U

Dt
= −C1


∇P + C2∇

2


U + C3(θ − C4 )  (2) 

Dθ
Dt

= C5∇
2θ  (3) 

where 


U  is the velocity, t is the time, P is the pressure, θ is the temperature and coefficients C1 to C5 will 
depend on a specific case considered. The same methodology can be applied to simulate wide range of 
different fluid flows: pipe flows, force convections, magneto-thermal convection, scaling analysis, 
exchange flows in reservoir model, mixing, fountain flows, bubble flow, step flows, heat exchangers, 
ventilation problems, etc. For instance, if under the consideration is a square cavity heated from one vertical 
wall and cooled from the opposite one with top and bottom walls kept adiabatic, those coefficients for 
dimensionless solution are defined as follows: 

C1 =1; C2 = Pr = ν
α

; C3 = Pr ⋅ Ra = ν
α

⋅ gβ (Δθ )l3

αν
; C4 = 0; C5 =1.0  (4) 

where ν is the kinematic viscosity, α is the thermal diffusivity, g is the gravitational acceleration, β is the 
thermal expansion coefficient, Δθ is the maximum temperature difference, l is the length of the cube, Pr is 
the Prandl number describing ratio of momentum and thermal diffusivities and Ra is the Rayleigh number 
associated with buoyancy driven flow describing strength of the convection. 

 

2. NUMERICAL APPROACH 

Those equations are approximated with finite difference equations and the HSMAC (Highly Simplified 
Marker and Cell) method (Bednarz et al. 2005-2010, Hirt 1975)  is used to iterate mutually the pressure and 
velocity fields on staggered mesh/grid allocation system, see Figure 1. The inertial terms in momentum 
equations are approximated using a third-order upwind UTOPIA scheme (Tagawa 1996). The absolute 
convergence criteria for the numerical solutions are specified based on the residual sums of all conserved 
quantities. If the residual sum is less than 10-6 for each conserved quantity, the equations are deemed to 
have converged at a specific time step. The time-step is chosen to ensure numerical stability according to 
the CFL condition. The numerical methods used in this work for simulation of natural convection have been 
widely verified by co-workers, by both the numerical and the experimental investigations for closely related 
problems (Bednarz et al. 2005-2010). 
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Figure 1. Staggered mesh grid allocations prevents possible pressure oscillations. Left: for 2-D cases all 
scalar variables are defined in the centre of cells, and vector variables in at the centre of vertical and 

horizontal cell faces accordingly. Right: grid for 3-D cases. 

3. OPENCL IMPLEMENTATION 

The numerical code is ported from CPU to GPU version using the OpenCL API, see references. This was 
motivated by the need of improving computation speed, as in some cases, e.g. computation of single case of 
boundary layer evolution (Bednarz et al. 2009) could take up to 12 hours on grid size 256x256. Therefore, 
all critical parts of previously available CPU code are re-implemented in several OpenCL kernels that could 
be executed by thousands simultaneous threads by a GPU. Figure 2 shows the flow chart of our HSMAC-
OpenCL solver. As seen, the initialization part includes: reading initial configuration files describing 
geometry and parameters of the problem to be computed, allocating memory for all field variables 
(pressure, velocity components, temperatures and spatial coordinates), preparing boundary conditions flags 
(to mark regions where the boundaries are located and what is their type). Once that’s done, the OpenCL is 
initialized, proper compute device is attached to its context and the CL program is compiled. Also the 
device memory buffers are created and filled with initial data.  

 

 

Figure 2. Flow char of the OpenCL solver. 
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The solver / runtime execution of all OpenCL kernels is controlled by host device (CPU). The flow chart 
shows two main loops: the outer loop, which is responsible for general time-step iterations and the inner 
loop used for mutual iteration of velocity and pressure fields to satisfy the continuity equation, before 
solving each energy equation time-step (Hirt 1975). For instance calculation of pressure and velocity 
correction is done by execution of the kernel krnl_pressure_velocity_correction, calculation of energy 
equation by krnl_energy, etc. In addition the interoperability feature of OpenCL with OpenGL can be used 
to visualize the results while they are still under computation. After reaching final time step, all results can 
be saved on disk for further analysis. 

Figure 3 shows simplified code snippet of sample OpenCL kernel being used to calculate vertical 
component of tentative velocity from momentum equation. Please notice, that all derivatives for vertical 
velocity are calculated at the middle of top vertical cell edge. For simplicity of presentation, convection 
acceleration is calculated using central approach. In real simulations, as mentioned UTOPIA was used for 
accuracy and stability. 

 

Figure 3. Simplified OpenCL kernel that calculates tentative, vertical velocity component from the 
momentum equation. 

 

4. RESULTS AND CONCLUSIONS 

Figure 4 depicts total execution times to reach final time of t = 5 for natural convection simulations at Pr = 
0.71 and Ra = 106 versus different grid sizes denoted in total cell numbers (product of grid sizes in X- and 
Y-direction). These results show potential speed-ups that can be achieved using GPU compute devices. 
Initial tests comparing GT 330M to Intel Core i7 showed average 30X speedup of GPU/CPU. Further, 
comparing S2050 execution times to GT 330M, there was additional ~7-9X speedup (which is 
approximately equivalent to the ratio of the number of streaming cores between those two GPUs). These 
results are indication of what can be achieved when using OpenCL with today’s GPUs for solving explicitly 
the Navier-Stokes equation for natural convection flows, i.e. obtaining converged results in few minutes 
instead of 10-12 hours.  
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Figure 4. Total execution times for S2050 and GT330M against number of computational cells and 
converged temperature contours for Pr = 0.71 and Ra = 106 (left wall = heated, right wall = cooled). 
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