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Abstract: Modern computer technology has facilitated the presence of high-dimensional data, whose
graphical representations are curves, images or shapes. Because of the high-dimensionality, a dimension
reduction such as functional principal component analysis or singular value decomposition is often em-
ployed. By using functional principal component analysis, a set of observed high-dimensional data can
be decomposed into functional principal components and their uncorrelated principal component scores,
that is,
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k=1

where f(x;) is the sample mean, & . is the ™ principal component score of observation ¢, and ¢ (w;) is
the k™ functional principal component observed at data point {z1, ..., 7,}.

With the aim of investigating distributional property of sample eigenvalues, we present two bootstrap
methods for resampling functional data. The difference between these two techniques stem from the dif-
ference of resampling principal component scores. The bootstrap procedures can be briefly summarized
as follows:

1. Hold the mean f(z;) and ¢y (x;) fixed at their realizations.
2. This step differs between two techniques:

(a) Fort = 1,...,n, generate bootstrap replication {5;1, N x } by sampling with replace-
ment from {& 1,...,& x }-

(b) Since each set of the principal component scores follows a standard normal distribution
asymptotically, generate bootstrap replication {&3, ..., &} } by sampling from independent
identically distributed (i.i.d) standard multivariate normal distribution.

3. Construct the bootstrap sample { f?(z;), ..., f2(x;)} from the bootstrapped principal component
scores.

The proposed two bootstrap procedures are applied to i.i.d functional data in simulation and to dependent
functional data in empirical example. As a result, generating principal component scores from N (0, 1)

produces more accurate bootstrap accuracy than resampling principal component scores, and thus more
accurately mimicking the behavior of sample eigenvalues and the amount of explained variation.
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1 INTRODUCTION

Recent computer technology facilitates the presence of functional data, whose graphical representations
are in the form of curve, image or shape. Many parametric statistical methods have been extended to
functional data framework (see for example, Ramsay and Silvermanl (1997} 2002} 2005)), while |[Ferraty
and Vieu| (2006) is an excellent reference on the adaption of many nonparametric statistical methods. In
functional data analysis, it is commonly assumed that random curves or functions are sampled from a
stochastic process f(z) in L?[0, 7], where L?[0, 7] is the Hilbert space of square-integrable functions on
the interval [0, 7]. The stochastic process f(x) satisfies the inner product < f,g >= [1" f(t)g(t)dt for
any two functions, f, g € L?[0,r] and induced squared norm || - || =< -, - >.

Among different techniques for capturing the characteristics of functional data, methods based on
Karhunen-Loe¢ve decomposition (also known as functional principal component analysis) are quite popu-
lar (see, (Cardot et al.|[1999, 2003; |Ca1 and Hall|2006; Hall and Hosseini-Nasab|2006; [Hall and Horowitz
2007), and we have also considered this kind of method in this work. A Karhunen-Loeve expansion of
f(z) is expressed by

F@) = pl@)+ > &), (1)
k=1

with the mean function p(z) = E[f(z)] and the basis functions ¢ (x) are the orthonormal eigenfunc-
tions of the covariance kernel I'(x, z) = Cov[f(z), f(z)]. The covariance kernel I'(x, z) can also be
approximated as

/OT I'(z, 2)pr(x)dr = Mpdr(2),
[(z,2) = Z @i () Pr(2),
k=1

where )\ is a set of eigenvalues in a decreasing order. The coefficient & in (I is given by the projection
of f(x) — p(x) in the direction of the k™ eigenfunction ¢ (), ie., & =< f(x) — p(x), dr(z) >.
The & consists of an uncorrelated sequence of random variables with zero mean and finite variance.
Asymptotically, the distribution of &4, can be captured by N (0, \).

In multivariate data analysis, the use of bootstrap techniques has been popularized since the work of |Efron
(1979) and [Efron and Tibshirani| (1993). In functional data analysis, there is comparably little work that
has been done on bootstrapping functional data. In functional linear regression with functional predictors
and scalar responses, Hall and Vial (2006) used the bootstrap technique by randomly sampling from i.i.d
functional data to determine the optimal number of principal components, while |(Gonzalez-Manteiga and
Martinez-Calvo| (201 1)) obtained the bootstrap samples by randomly sampling from the residuals, in order
to estimate the variance of regression coefficient and construct its confidence intervals.

Hall and Vial| (2006)), (Gonzalez-Manteiga and Martinez-Calvo| (2011) are two examples of bootstrap-
ping functional data in the context of functional linear regression, and the use of bootstrap techniques
allow the estimation of regression coefficient and assess its uncertainty. However, our aim is not to esti-
mate regression coefficient, but to study the distribution of functional data. In this direction, |Poskitt and
Sengarapillail (2011)) put forward the idea of bootstrapping functional data by randomly sampling from
principal component scores (also known as basis coefficients). We follow this direction and extend it
where possible.

The contribution of this paper is to propose a novel technique for bootstrapping a set of i.i.d or dependent
functional data, by randomly drawing principal component scores from a standard multivariate normal
distribution. Through a series of Monte Carlo studies and a real data set, the bootstrap accuracy is evalu-
ated and compared with the existing approaches of |Poskitt and Sengarapillai| (2011)).

The outline of this paper is given as follows. In Section |2} we describe the basic structure of functional
data and its approximation by singular value decomposition. Section [3|introduces a number of nonpara-
metric bootstrapping techniques. Via simulation studies, we compare the bootstrap accuracy among these
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three approaches in Section[d] Section [5]presents a real data example. Section [6] provides a summary of
our main results, and some thoughts on how the bootstrap techniques might be extended.

2 BASIC STRUCTURE

Although the function f(x) is of infinite dimension on the interval [0, 7], it is seldom observed at infinitely
many data points. Instead, a finite number of data points are observed. Here, we presume that each curve
is observed on a common and dense grid of p data points z;;4 = 1,...,pwith0 < 2y < w9 < ...,z <
r. Thus, a set of raw functional data X = {f1(z), ..., fn(z)} of n observations on some function space
X will consist of an n x p data matrix, where

o0
ft(mi):f(mi)+zgt,k¢k(mi)v for tzlv"'7n7 izla"'apa

k=1
where f(z;) = L 37| fi(z;),i=1,...,pas the sample mean of functions.

A standard approach to estimating the covariance kernel is to replace population mean function by sample
mean function,

[, 2) Z{ft Fl)Hfulz) = Fz)} )

as an estimator of I'(z;, z;). Let £¢(x;) = f(z;) — f(x:) be the centered functional data. The f¢(z;)
can then be approximated by singular value decomposition expressed as

fé(z;) =n'?ULR/, 3)

where UU = R'R = Iy, and K = rank[f(z;)] = min(n—1,p), and the diagonal matrix L =

diag(v/11, V12, . .. ,V/1x ), where Iy, lo, . . . , L are non-negative singular values of £¢(x;)' £¢(z;)/n. The
n columns of U and p columns of V" are called the left singular vector and right singular vector of f¢(z;).
Notice that singular value is equal to the square of eigenvalue.

Equation (3)) provides an empirical counterpart to the Karhunen-Loéve expansion in that a curve in X’
can be written as

K
fi(zi) = fz:) + \/ﬁzut,kwkéf)k(%)a
=1

where w; = f Vi, dr(x;) = \f and f is the adjustment made to discretization of an interval on

a dense grid. Hereafter, (uyj, wg, ¢x(2;)) will form the foundation of our subsequent methodology.
3 THE BOOTSTRAP
3.1 Random sampling with replacement from the principal component scores

Given the raw data X = {f;(z),..., fn(z)} of n observations on X, an obvious way to get some idea
of the sampling variability of a statistics of interest is to re-sample from X and construct a bootstrap

replication X* = {f{(x),..., fx(z)},

f(@:) = f(a;) + ViULR,
F(z) = fz) + VnU*LR . “4)

From (@), we can see that the bootstrap replications of the process can be generated in the following
manner. Bootstrap step

BI1: Hold the mean f(x;), the singular values [;,j = 1,..., K, and basis functions ¢y (z;),k =
,Kandi=1,...,pfixed at their realized values.
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B2: Fort = 1,...,n, generate bootstrap replication uy ,,k = 1,..., K by taking i.i.d random draw
fromusp, k=1,..., K.

B3: Construct the bootstrap sample X* = {f;(z),...,fi(z)} where the bootstrap realization
fi(z),t=1,...,nandi=1,...,p,is constructed as in

K
filwi) = Fla) +vn Y uf pwrdi ()

k=1
by replacing u; 1,k =1,..., K by uz:,wk =1,...,K.

3.2 Random drawing the principal component scores from a standard multivariate normal dis-
tribution

The following adaption, for example, indicates how we can simulate different realizations of a process
whose stochastic structure approximates that of the process giving rise to the original data in X'. Simula-
tion step

S1: Hold the mean f(z;), the singular values I,k = 1,..., K, and basis functions ¢y (z;),k =
1,...,K,i=1,...,pfixed at their realized values.

S2: Fort = 1,...,n, generate new realizations uy ,,k = 1, ..., K by taking i.i.d random draws from
a standard multivariate normal distribution.

S3: Construct the bootstrap sample X* = {ff(x),..., f(x)} where for t = 1,...,n the bootstrap
realization f;(x;),i = 1,...,p, is constructed as in

K
Folws) = flas) + VY uf jwpdn(s)

k=1

by replacing uy , k = 1,..., K by uy,,k =1,..., K from a multivariate normal distribution.

4 SIMULATION STUDY

Since sample eigenvalues are of great importance in determining the amount of explained variation, we
concentrate on the bootstrap accuracy of the sample eigenvalues. The performance of these two bootstrap
methods is evaluated and compared based on the difference between the holdout sample eigenvalues and
bootstrapped sample eigenvalues. To measure such a difference, we calculate the mean error (ME), mean
absolute error (MAE) and mean squared error (MSE) given by

B
ME = S S - 1),

r=11i=1

1 A B § F) 1 LS 1) 6 \2
MAE = =3 S |10 - L2], MSE=—_=% > (1"~ L)

r=1 i=1 r=1

s
Il
_

where A represents the total number of simulated samples, B represents the total number of bootstrap
replications, and § indicates a specific eigenvalue.

With A = 200 replications, each simulated curve sample consists n = 500 observations and p = 4
dimensions. We have considered the following simulation setup

C (1) (11,12, 13, 14) = (0.9, 0.09, 0.009, 0.001) Fixed eigenvalues

ase UandV simulated from normal distribution
C 2) (11,12, 13, 14) = (0.9, 0.09, 0.009, 0.001) Fixed eigenvalues

ase UandV simulated from uniform distribution
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As in both simulation settings, we know the true data generating process from which we construct random
matrices from UDV’ and apply the aforementioned bootstrap procedures to each simulated sample. To
measure the performance of bootstrap procedures, Tables [T| shows the ME, MAE and MSE. As a result,
the bootstrap procedure of randomly drawing principal component scores from a multivariate normal
distribution performs better uniformly than the bootstrap procedure that samples with replacement from
estimated principal component scores.

Table 1: ME, MAE and MSE between the holdout sample eigenvalues and bootstrap sample eigenvalues,
based on A = 200 sample replications and B = 1000 bootstrap replications. Algorithm B represents the
bootstrap procedure shown in Section[3.1] while algorithm S represents the bootstrap procedure shown in
Section The U and V' matrices were generated from N (0, 1) or U(0, 1) distribution.

ME MAE MSE

algorithm B algorithm S algorithm B algorithm S algorithm B algorithm S

I1 — 1% -3.0354e-03 -1.2057e-05  3.6930e-03 2.6775e-03  2.4636e-05 1.3863e-05

S| la—15  2.6688e-03  2.5331e-06  3.4005e-03 2.5498e-03  2.1587e-05  1.2765e-05
S| i3—15 3.3536e-04 8.4214e-06  3.5684e-04 2.5697e-04 2.3611e-07 1.4476e-07
Z | 1y —1%  3.1228e-05  1.1028e-06 3.17928e-05  1.7086e-05  2.2459%e-09  8.9076e-10
I1 — 1% -19126e-03 -4.5128¢-06  2.0513e-03 1.9457e-03  7.2403e-06  7.1412¢-06

=l la—15 1.6986e-03 8.7968¢-08  1.8764e-03 1.8643e-03  6.8081e-06  6.0859-06
S| l3—15 1.9668e-04 3.9063e-06  1.9884e-04 1.356le-04  7.2884e-08  3.8775e-08
S| 1y -1 1.7285e-05 5.1854e-07  1.7318e-05  8.8508¢-06  6.0126e-10  1.9439¢-10

5 EMPIRICAL EXAMPLE

Fertility rates in Australia, as in most other developed countries have been falling for a considerable time.
Consider annual Australian fertility rates from 1921 to 2006 for ages 15-49, obtained from the Australian
Demographic Data Bank (Hyndman) [2007). These are defined as the number of live births during each
calendar year, according to the age of the mother, per 1000 female resident population of the same age at
30 June.
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(a) Australian fertility rates from 1921 to 2006 viewed as uni- (b) Age-specific Australian fertility rates viewed as functional
variate time series for ages {17, 23,29, 35,41,47}. time series for ages 15-49, observed from 1921 to 2006.

Figure 1: Age-specific Australian fertility rates from 1921 to 2006 for ages 15-49.
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Figure [E shows the fertility rates viewed as a univariate time series for ages 17, 23, 29, 35, 41 and 47,
while a rainbow plot (Hyndman and Shang},2010) of functional time series is presented in Figure 1b. The
colors of the functional time series plot indicate the time ordering of the curves in the same order as the
colors in a rainbow with the distant past curves shown in red and most recent curves shown in purple.

Figures [Ta] and [Ib] reflect the changing social conditions affecting fertility rates. For instance, there was
an increase in fertility rates in all age groups around the end of World War II, achieving a peak in 1961,
followed by a rapid decrease during the 1970s due to the increasing use of contraceptive pills, and then
an increase in fertility rates at higher ages in most recent years caused by a tendency to postpone child-
bearing while pursuing careers.

For any observed data matrix, we decompose it by singular value decomposition to obtain U, L and R
matrices. Here, we chose to study only the first four singular values. By holding L and R constant, we
can either bootstrap U matrix by sampling with replacement or drawing random sample from a standard
multivariate normal distribution. The difference in how to bootstrap U matrix leads to two different
algorithms, denoted by algorithm B and algorithm S. The ME, MAE and MSE are tabulated in Table
The performance of algorithm S is uniformly better than algorithm B for mimicking the behavior of the
sample eigenvalues and the amount of explained variation.

Table 2: ME, MAE and MSE between the holdout sample eigenvalues and bootstrap sample eigenvalues,
based on B = 1000 bootstrap replications. Algorithm B represents the bootstrap procedure shown in
Section 3.1} while algorithm S represents the bootstrap procedure shown in Section 3.2}

ME MAE MSE
algorithm B algorithm S algorithm B algorithm S  algorithm B algorithm S
I, — 1% -8.0000e-03 -6.7054e-03  1.9309e-02 1.7275e-02  5.6274e-04  4.7694e-04
lo — 185 -4.1240e-04 -1.1790e-03  1.2650e-02  1.2016e-02  2.4244e-04  2.2500e-04
I3 —15 -49186e-04 -4.2957e-04 5.6891e-03  5.2798e-03  5.1202e-05  4.4443e-05
ly — 1% -32290e-04  1.3774e-04  3.3396e-03  3.0107e-03  1.7605e-05  1.4538e-05

6 CONCLUSION

In this paper, we have introduced two bootstrap methods to investigate distributional property of sam-
ple eigenvalues in functional data. These two bootstrap procedures have been applied to i.i.d data in
simulation and dependent data in empirical example. As measured by mean error, mean absolute error
and mean squared error, the bootstrap method of randomly drawing principal component scores from a
standard multivariate normal distribution performs better in approximating sample eigenvalues than the
bootstrap method that samples with replacement from the estimated principal component scores. There-
fore, the former one should be used for bootstrapping functional data, since it is better to approximate
the sample eigenvalues and the amount of explained variation. Although this paper mainly concentrates
on studying the distributional property of sample eigenvalues, the bootstrap procedures can be applied in
other contexts, such as hypothesis testing and construction of confidence intervals.
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