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Abstract: This paper reports further on work presented at MODSIM09 (Ricketts 2009), which itself 
extended modeling of behavioural rules for activity scheduling in the transport domain as previously 
published (Olaru, Smith 2005). We again report on the use of genetic algorithms to tune a modified Mamdani 
fuzzy rule based system (FRBS), this time focusing on the optimization of the rule set composition.  

A Mamdani fuzzy knowledge base system is a fuzzy logic rule based system (FRBS) initially proposed by 
(Mamdani 1974) as a fuzzy logic controller. One uses a combination of fuzzification, fuzzy inference and 
defuzzification together with a knowledge base comprising database of fuzzy sets and a rule-base of fuzzy 
rules. This version substitutes fuzzy selection for defuzzification and, after training, outputs predicted travel 
schedule decisions given a coding of an individual's situation. The tuning of such a system is an open 
problem. 

To tune the system, two genetic algorithms were applied. One, the rule-base GA (rb-GA), taking the database 
as fixed, attempts to firstly maximize the classification rate and secondarily minimize the size of the rule 
base. The other, the fuzzy set GA (fs-GA) attempts to pre-tune the partitioning of the fuzzy sets for the rb-GA 
using an information entropy-like measure as a heuristic. The fs-GA was the focus of (Ricketts 2009), and 
hence the rb-GA is the focus of this report. 

The population consists of 100 chromosomes, each of which is of variable length of up to 100 genes. Each 
gene is a pair, representing an antecedent rule and a consequent. Crossover is an asymmetric single-point 
variable-length operator. Several mutation operators are defined, point mutation, delete, extend, inversion. 
Selection is elitist, using a ranking system. Maturation consists of the translation of a chromosome into a full 
FRBS, and fitness is the proportion of correct predictions, further weighted according to a minimal defining 
length criterion to first prefer accuracy and then compactness. 

The effect on the convergence, classification rates and rule-set compactness of four variations was 
investigated. 

• The type of fuzzy rule composition/combination on the classification and compaction of the FRBS rule 
set; whether the “single-best” operator of (Olaru, Smith 2005), or a new operator we call “first-best”. 

• The degree of disruption within the GA on the convergence properties of the GA,  
• The effects of a specific selection strategy that we call heuristic mate selection on the convergence 

properties of the GA. 
• The effects of pre-tuning the FRBS partitioning parameters. This is already reported in (Ricketts 2009). 

Heuristic mate selection was not found to be effective. Single-best composition was found to give better 
classification rates, but first-best composition produced much more compact rule sets with better entropic 
qualities. The degree of disruption in the GA had an effect in that it converged on better classification rates at 
the cost of larger rule sets. Pre-tuning, as previously reported, led to more compact rule set and better 
classification rates. 
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1. INTRODUCTION 

1.1. The Trip Scheduling Problem 

People are required to make trip-scheduling decisions in their daily lives. They deal with a rich set of 
uncertainties – changes of venue, priority, and time of activities – choices in mode, route, and time of trips – 
information horizons – delays and changes in current activities, and in trips. Populations both evolve and 
contain, a rich set of applicable strategies. As previously stated in (Ricketts 2009), Olau and Smith (Olaru, 
Smith 2005) published a study based on transport decisions in hypothetical situations made by 126 
respondents in a follow-up survey after a larger survey of students and academics in Bucharest in November 
1998. They attempted to obtain a set of travel decision rules. Olaru and Smith showed that a Mamdani FRBS 
(Cordón 2001) allowed them to “examine a broader and richer field than traditional methods” and “represents 
the real system in a form close to human perception”. Their system had 56 rules and achieved 82-87% 
successful classification rates. This problem has been further analysed, concentrating on the rule sets, the 
formal grammar of the fuzzy rules, and the composition rules. The problem is now cast as a 
learning/classification challenge, where the inputs are coded as real numbered tuples, and outputs of the 
FRBS are discrete values representing predicted responses of individuals to their situation. 

1.2. Fuzzy Rule  Based Systems 

Fuzzy rule based systems (FRBS) use a fuzzy logic (Zadeh 1965) inference engine to process a knowledge 
base encoded as a combination of a database of facts and a rule-base of inferential rules. The Mamdani FRBS 
was proposed initially proposed as a fuzzy logic controller (Mamdani 1974). This research compares two 
inferencing/composition and defuzzification approaches emphasizing two facets: competition (first-best 
maximises matching/the degree of association of the pattern to the class) and collaboration (as (Cordón 
2001) indicated, single-best considers classification by other active rules (p.96)). The latter operator was used 
in Olaru and Smith. 

1.3. Genetic Algorithms 

Genetic algorithms (GAs), first described in (Holland 1975), are useful for optimisation problems including 
both the database tuning and rule-base structure of FRBSs (Cordón 2001, Maniadakis, Surmann 1999). They 
make use of objective functions, implicitly utilising an error space, and thus have to deal with the topology 
and curvature of that space. We examine four distinct areas in the application of GA to optimising the FRBS 
with respect to classification capability and rule complexity of a modified Mandami FRBS, namely: 

1. The effects of the type of fuzzy rule composition/combination. 
2. The effects of pre-tuning the FRBS partitioning parameters. 
3. The effects of varying the degree of disruption within the GA on the convergence properties of the 

GA, leading secondarily to variation of classification capability, and parsimony of the FRBS. 
4. The effects of a specific selection strategy that we call heuristic mate selection on the convergence 

properties of the GA. 
 
Disruption in a GA has sometimes been characterized as a problem, defined in terms of the schema theorem 
as the probability of a schema surviving intact from generation to generation (Falkenauer 1996). It has also 
been shown to improve convergence in difficult topographies (Kuo, Hwang 1996). Amongst reasons for non-
convergence are, stalling due to loss of population diversity, undirected search due to loss of schemas, and 
the topography of the error space. Thus, one aspect of a GA worth exploring is the degree of disruption. 
Heuristic mate selection was conceived as a different approach to the same problem, and was implemented as 
a part of the selection process whereby a selected breeder chromosome had the chance to “reject” a potential 
mate. 

2. THE MODIFIED MAMDANI SYSTEM 

This version of the Mamdani FRBS substitutes selection for defuzzification since the application is not a 
control one but a classification one with disjoint classes. The modified FRBS is fed tuples of real values. The 
selection interface takes the fuzzy partition from the inference system, and outputs a discrete value, as 
illustrated in Figure 1. At least one rule of n rules fires for each decision situation, y, and each firing produces 
a fuzzy set membership ( )y

nB′μ . 

The rules are composed using two forms:  
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• a first-best rule (similar to what Cordon calls aggregation by means of the maximum t-conorm) 
( ) ( ) ( ){ }yyy

nBBB ′′′ = μμμ ,...,max
1

 (1) 

 
• single-best (sum activations), similar to what Olaru and Smith (2005) used in their paper.  

( ) ( ) ′′ = yy
nBB μμ  (2) 

 

Single-best composition tends to act to give the system some of the properties of a neural network, i.e. the 
behaviour of the rule base as a whole depends on the interaction between specific rules. First-best presumes 
that at most one rule dominates for any one situation and is more closely related to Boolean logic. In both 
cases, to break a tie, the first encountered outcome is selected. 
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Figure 1. The modified Mamdani FRBS with Selection replacing de-fuzzification.   

(From (Ricketts 2009), after(Cordón 2001)) 
 

3. THE GENETIC ALGORITHM 

Two different Genetic Algorithms (GAs) were used in this study for different purposes. The “rule-base” GA 
(rb-GA) and a “tuning” GA (fs-GA). The fs-GA was used to provide alternative parameters for the fuzzy 
membership functions (FMFs) in the FRBS as a contrast to those deduced by (Olaru, Smith 2005). The 
details of this are given in (Ricketts 2009), noting here again that the fs-GA differs from other work in that it 
is a pre-tuning step using a heuristic, executed before the rules are established. The rb-GA, the major subject 
of this report, was used to optimise the FRBS with respect to both the number of rules and the maximum 
classification rate. The rest of this section describes the rb-GA. 

3.1. Rule Structure 

Each rule consists of an implication with monotone monomials in the antecedent, and a single literal 
consequent Note that for each adjective there is a default frb_X_none defined (where ‘X’ is replaced by ‘f’, 
‘ts’ etc), and simply means “do not consider”, and has the effect of generalising the rule – equivalently, of 
shortening it. E.g. “IF flexibility=flexible AND time_saving=small AND time_of_day= night AND 

duration_next_activity=short THEN action=remove”.  I.e. if the schedule is flexible and the time saving 
is small and the time of day is night and the duration of the next activity is short, then remove the next item 
from the schedule. The list of antecedents and consequents is shown in Figure 2. 

3.2. Chromosome 

Given the definitions in Figure 2, there is a limited number (768) of different possible antecedent rule sets 
each of which will have a single consequent. Thus, each gene is a pair of integers, the antecedent part and the 
consequent part. We will refer to this form as being integer-pair form, and its translation as implication form. 
Each individual chromosome consists of a variable length chromosome of these genes. Since the rule count 
deduced by (Olaru, Smith 2005) was 56, the maximum chromosome was limited to 100 genes.  

3.3. Population and Breeding 

The population consists of 100 chromosomes. Additionally the population maintains a fitness value for each 
chromosome. Breeding consists of the application of two phases of selection and the application of various 
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operators to the population. After application of the selection policy the population consists of parents and 
their offspring in equal numbers. The fittest parents are preserved unaltered but the majority of the population 
is subjected to a bout of mutation using a random selection of mutation operators. 

 

Antecedent conditions and their adjectives 

• frb_flexibility = (frb_f_none, frb_f_rigid, frb_f_not_rigid, frb_f_flexible);  

• frb_time_saving = (frb_ts_none, frb_ts_neg_large, frb_ts_neg_small, frb_ts_small, 
frb_ts_medium, frb_ts_large); 

• frb_time_of_day = (frb_tod_none, frb_tod_night, frb_tod_early_am, frb_tod_am, 
frb_tod_noon, frb_tod_early_pm, frb_tod_later_pm, frb_tod_evening); 

• frb_duration_next_activity = (frb_dna_none, frb_dna_short, frb_dna_medium, 
frb_dna_long); 

 
Consequents 
• frb_action = (frb_a_none, frb_a_do_nothing, frb_a_change_time, 

frb_a_change_duration, frb_a_location, frb_a_remove, frb_a_new, 
frb_a_change_transport); 

Figure 2. The four antecedent conditions, each of which is represented by a partition of fuzzy sets. Each of 
the fuzzy sets except the *_none represents the degree of membership applicable to one “linguistic 

adjective”. The consequents are by contrast not a linear partition, but disjoint fuzzy sets. 

3.4. Selection and Mate Selection 

Selection consists of the selection of a breeding pool (based on fitness), and the separate phase of mate 
selection or pairing. A form of heuristic mate selection was introduced in an attempt to preserve differences 
between parents, selecting partners randomly until either five attempts had been made or a partner with a 
different length or different fitness score. This is a rather weak heuristic, but serves to prevent incest. 
Selection is elitist ranking selection, in which individuals are first ranked by fitness and then working from 
fittest to least fit, the first 50 individuals mate with selected members of the old-population. Offspring of each 
mating replace the least fit individuals, and the size of the old population is reduced accordingly.  

3.5. Crossover 

Crossover in this case was an asymmetric single point crossover where a random crossover point was 
computed for each parent separately and two new strings were composed from the head of one and the tail of 
the other. During appending of the tail parts each gene is eliminated if its antecedent is already part of this 
new chromosome to prevent contradiction. As a result of this policy the two offspring are generally of 
different lengths. 

3.6. Mutation 

No mutator may create a chromosome that has duplicate antecedent parts in order to avoid contradiction. 

• Point Mutation: A randomly selected locus in the antecedent part or the consequent of one gene is 
incremented or decremented. If a duplicate antecedent is generated then the antecedent is replaced at 
random. 

• * Delete: Delete a sequence of genes from a chromosome. No more than one quarter of genes is 
deleted. 

• *  Shuffle: Up to eight pairs of genes chosen at random are swapped within a chromosome.  
• * Branch: Extends the chromosome with a rule generated by a point mutation of a randomly 

selected existing gene. 
• Inversion: A sequence of genes is simply inverted in place. 
• Extend:  Extends the chromosome with a randomly generated gene. 

Shuffle and Inversion are two similar strategies for regrouping genes so that crossover has a chance to test 
different building blocks. * denotes operators used only for runs defined as disruptive. 

3.7. Decoding, Evaluation and Fitness 

Each chromosome is interpreted as a fuzzy rule set and tested for its ability to correctly partition the entire set 
of test cases by executing it in a Mamdani FRBS, against the set of examples. Fitness of an individual indf , is 
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the proportion of correct classifications correctN , made against the test population popN , weighted by reduced 

rule count indmax NN − . This gives a ranking based mostly on strength of prediction and secondarily to 

compactness of representation. 

( )








+−= correct

max

indmax

pop
ind N

N

NN

N
f

1
 

(3) 

3.8. Pre-tuning 

The pre-tuning step (Ricketts 2009) was tested in this work using a single execution of the fs-GA. As such the 
Mamdani FRBS was tested with two different data-bases.  The “Olaru” sets are as reported in (Olaru, Smith 
2005) and the “tuned” sets are those derived from separate runs of the fs-GA. 

4. EXPERIMENTS AND RESULTS 

The rb-GA was run with the following variations. Each run was halted after 10,000 generations. 

1. Two types of fuzzy combination were used within the Mamdani machine: (a) single-best, and (b) 
first-best. 

2. Two different sets of genetic operator were used within the GA: (a) a simple set using crossover, 
mutation plus single gene extension and single gene shortening, and inversion; (b) disruptive GA 
with all those operators, plus deletion, shuffling and branching. 

3. Additionally all the above were run: (a) with a heuristic mate selection operator and (b) without. 
4. Two different approaches to fuzzy set tuning were tested: (a) the original sets published by Olaru 

(replicated four times), and (b) the outcome of four different tunings using the fs-GA (above).  
This gave 64 separate runs of the GA.  

For each run we record the number of rules in the rule-base, the proportion classified correctly (both of these 
quantities being part of the fitness criterion).  From the last two a mean entropy per rule can be computed, 

using a variant of standard Shannon entropy, −= ))ln(Pr()Pr( xxH  where Pr(x) is in this case the 

probability of the Mamdani FRBS correctly classifying a randomly selected antecedent. Since the GA is 
elitist, the generation number in which the final elite solution first appeared was also recorded.   

4.1. Statistical Methods 

Using the R package (http://www.r-project.org/), we used ANOVA with orthogonal contrasts to determine 
which variation/factors or combinations of factors were significant. It was immediately apparent that 
heuristic mating had no effect on mean rule counts and on proportion classified. The three factors included in 
the ANOVAs reported here were combination, disruption and tuning. These were tested for their effect on 
rule count and on proportion classified. 

4.2. Analysis 

Proportion Classified ANOVA of Proportion Classified showed that degree of disruption of the GA is 
significant and both fuzzy combination type and the tuning of the fuzzy sets were highly significant, with 
highest mean classification rate being shown by a disruptive GA running against tuned fuzzy sets and with 
Single-best composition. The highest rate overall rate of 86% was attained with this combination with 81 
rules but classification rates of 84%, with 49 rules were also achieved this way.  Using first-best combination 
classification rates were generally lower although with much lower rule counts. One instance run with a 
disruptive GA, first-best combination and tuned fuzzy sets gave 84% classification with 47 rules, however 
79% was attained with just 33 rules.    

Rule counts ANOVA of Rule Counts showed that both the degree of disruption of the GA and fuzzy 
combination type are highly significant and that they interact strongly.  Mean rule counts were much lower 
for first-best combination, ranging from 20 to 47 with a median of 30, as compared to single-best with a 
range of 33 to 89 with a median of 53. The disruptive GA showed a strong tendency to push up rule counts, 
especially in combination with single-best combination. 

Mean Rule Entropy This measure is a function of both rule count and proportion classified. Due to space 
constraints this is reported without further analysis. The degree of disruption of the GA and fuzzy 
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combination method are highly significant, fuzzy set tuning is significant and there is some interaction 
between combination and tuning. Tuning reduced rule counts and increased mean rule entropy, disruption 
operated vise-versa. 

Termination time/generation ANOVA showed that the degree of disruption of the GA and fuzzy combination 
method are highly significant with the disruptive GA terminating much later on average, especially in 
combination with single-best combination, and at the cost of higher rule counts. 

Table 1: Means (over a total of 64 runs) of Proportion Classified, Rule Count, Termination Generation, and 
Mean Entropy per Rule, for each of eight variants after heuristic mate selection was pooled.  

Run Parameters Code Proportion 
Classified 

Rule Count Termination  
Generation 

Mean Rule 
Entropy 

GA Disruptive,  
Combination FirstBest, 
Sets Olaru 

DFO 0.7309 28.38 5277 0.0211 

GA Disruptive, 
Combination FirstBest, 
Sets Tuned 

DFT 0.7602 33.38 6033 0.0173 

GA Disruptive, 
Combination SingleBest, 
Sets olaru 

DSO 0.7626 66.75 9393 0.0084 

GA Disruptive, 
Combination SingleBest, 
Sets Tuned 

DST 0.8060 57.13 9334 0.0093 

GA Simple, 
Combination FirstBest, 
Sets Olaru 

SFO 0.7112 26.38 3306 0.0234 

GA Simple, 
Combination FirstBest, 
Sets Tuned 

SFT 0.7357 30.13 3990 0.0194 

GA Simple, 
Combination SingleBest, 
Sets Olaru 

SSO 0.7429 39.38 7471 0.0146 

GA Simple, 
Combination SingleBest, 
Sets Tuned 

SST 0.7753 44.00 6464 0.0124 

5. DISCUSSION 

5.1. Combination procedure 

If the aim is to generate easily analysed rules then first-best seems a good choice. The rules interact in an 
easily understood and interpreted way. A rule has utility only if its activation is maximal for some situation. 

Single-best however seems to give better classification performance but at the cost of an increased number of 
rules, and possibly at the cost of increased complexity in the topology of the objective function surface. The 
latter is shown by the tendency of the GA to stall (show epistasis), given the number of runs which gave high 
rule counts and low classification rates. It first sums activations, and then selects the maximally activated set. 
Since there is a summing step, multiple rules may contribute to the classification of a single situation. This 
has several effects, (a) the FRBS acquires a slightly neural net like property as knowledge is distributed 
within the rule set, (b) the complexity of the problem the GA must solve is increased by the interaction 
between rules. Rules are more complex in their effects and so are harder to understand. The explanatory 
power of the rule set, as far as a human analyst is concerned, is reduced. 

5.2. Disruption 

Disruption was intended to prevent premature termination of the GA by providing more variation in the 
population. Operators which extend the chromosome length are intended to provide extra sites for mutation 
to operate on.  With first-best combination, this is relatively benign since there is no interaction between 
rules, and extra rules have no effect on classification unless they are improvements. The only other effect 
would be to dilute the effect of mutations which may slow the progress of the GA marginally.  With single-
best combination, randomly introduced rules have immediate and unpredictable effects. Since rules interact, 
introducing a number of random rules can increase the activation of fuzzy sets and change the classification 
of the system, not because strong rules predominate, but because a number of weak rules can dominate a 
single strong one.  
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Factor Df Sum Sq Mean Sq F value Pr(>F) 

Disrupt * 1 0.008946 0.008946 6.8048 0.0116 

Comb *** 1 0.022109 0.022109 16.8173 0.0001 

Tuning *** 1 0.016812 0.016812 12.7885 0.0007 

Comb: 
Tuning 

1 0.000481 0.000481 0.3656 0.5478 

Disrupt: 
Comb 

1 0.000038 0.000038 0.0286 0.8663 

Disrupt: 
Tuning 

1 0.000253 0.000253 0.1926 0.6624 

All 1 0.000038 0.000038 0.0291 0.865 

Resid 56 0.07362 0.001315   
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Factor Df Sum Sq Mean Sq F value Pr(>F) 
Disrupt *** 1 2093.1 2093.1 28.6809 <0.0001 

Comb *** 1 7921.0 7921 108.5400 <0.0001 

Tuning  1 14.1 14.1 0.1927 0.6624 

Comb: 
Tuning 

1 189.1 189.1 2.5907 0.1131 

Disrupt:*** 
Comb 

1 1242.6 1242.6 17.0266 0.0001 

Disrupt: 
Tuning 

1 169 169.0 2.3158 0.1337 

All 1 240.2 240.2 3.2921 0.0750 

Resid 56 4086.8 73.0   
 

Figure 2: Box and whisker plots, and ANOVA tables showing the effect of modifying disruption, the fuzzy 
combination and pre-tuning. The codes on the y-axes are from the second column of Table 1.  
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