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Abstract: Basin-scale water planning and management problems may be approached by linking a river 
basin simulation model to a global heuristic optimization algorithm. Global optimization algorithms, 
however, need at least thousands of function evaluations each requires the river basin simulation model to 
run. This makes the resulting simulation-optimization model computationally expensive. Meta-modelling 
can be used to deal with the burden of computations in which a surrogate model, running of which is 
much faster than the exact simulation model, is used instead of the simulation model.  

The surrogate or meta-model is built by using a function-approximation technique by which the 
expensive simulation model is approximated. Support Vector Machines (SVMs), a novel artificial 
intelligence based method, and Response surface modeling techniques are adopted and tested in this study 
as the meta-models approximating MODSIM river basin simulation model. PSO (particle Swarm 
Optimization) algorithm is linked first to the MODSIM DSS resulting in PSO-MODSIM model that can 
be used in solving a variety of water resource problems at basin scale. Then an adaptive sequentially 
space filling meta–modeling approach is developed in which SVM and polynomial-based surrogate 
models replace MODSIM. In this approach the accuracy of the approximate model is sequentially 
improved in course of optimization in an adaptive way. Finally, the performance of the PSO-MODSIM, 
PSO-MODSIM~SVM and PSO-MODSIM~Polynomial models are evaluated by their application to 
integrated water resources planning problem of Atrak river basin located in north-east of Iran and the 
results are analysed and compared.  
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1. INTRODUCTION 
Modeling water resources at basin scale calls for the need of using different kind of mathematical models 
representing complex hydrologic, socio-economic and management processes taking place in a river 
basin. This need may be dealt with through linking a river basin simulation model to a global heuristic 
optimization algorithm. Global optimization algorithms, however, need at least thousands of function 
evaluations each requires the river basin simulation model to run. This makes the resulting simulation-
optimization model computationally expensive. Meta-modeling can be used to lower the burden of 
computations in which a surrogate model, running of which is much faster than the exact simulation 
model, is used instead of the simulation model. The surrogate or meta-model is built by using a function-
approximation technique by which the expensive simulation model is approximated. Artificial Neural 
Network (ANN), Support Vector Machine (SVM), Kriging and Polynomial models are some of the most 
common meta-models used. 
Robinson and Keane (1999) presented a case for employing variable-fidelity analysis models and 
approximation techniques to improve the efficiency of evolutionary optimization for complex design 
tasks. Computational frameworks for integrating a class of single-point approximation models with 
Evolutionary Algorithms (EAs) were proposed by Nair and Keane (2001). However, such frameworks are 
restricted to a special class of approximation models that are domain specific. For more general 
approximation models, Ratle (2001) examined a strategy for integrating evolutionary search with 
Krigging models. Numerical studies were presented for certain pathological cases to show that the idea of 
constructing an accurate global surrogate model may be fundamentally flawed due to the curse of 
dimensionality. Liang et al. (2000) proposed a strategy for coupling EAs with local search and quadratic 
response surface methods. However, when working with multimodal problems, the accuracy of quadratic 
models may become questionable. Farhang-Mehr and Azarm (2005) used a sequential approach with 
adaptation to irregularities in the response behavior for Bayesian meta-modeling in engineering design 
simulations. Shourian et al. (2008) linked MODSIM river basin DSS to the PSO algorithm to simulate a 
river basin system operation and to evaluate the fitness of each set of selected design and operational 
variables with respect to the model’s objective function, which is the minimization of the system’s design 
and operational cost. Since the direct incorporation of MODSIM into a PSO algorithm is computationally 
prohibitive, they trained an ANN model as a meta-model to approximate the MODSIM modeling tool. 
Mousavi et al. (2010) presented a methodology in which the problems of design of experiments, function 
approximation and function optimization in a surrogate optimization problem are sequentially solved in a 
feedback loop so that a much fewer number of experiments is required for the task of function 
approximation. The proposed approach adaptively utilizes the information obtained from function 
optimization, finds the regions where more data are needed, updates the training data set to fill the space 
and sequentially improves the accuracy of the meta-model.  

In spite of extensive works carried out on this topic, comparison of different meta-modeling techniques 
especially in hydro-systems is limited. In this paper, Support Vector Machines (SVMs) and Polynomial 
models are adopted and tested as meta-models approximating MODSIM river basin simulation model. 
PSO (particle Swarm Optimization) algorithm is linked first to the MODSIM DSS resulting in PSO-
MODSIM model to solving the Atrak river basin water allocation problem. Then the mentioned two 
surrogate models have replaced MODSIM in the PSO algorithm according to an adaptive sequentially 
space filling (ASSF) meta–modeling approach, in which the accuracy of the approximate model is 
sequentially improved during the course of optimization.  
 

2. META-MODELING TECHNIQUES 

2.1. Support Vector Machines (SVMs) 

SVMs are learning systems that use a linear high dimensional hypothesis space called feature space. This 
method was introduced by Vapnik (1998) and his colleagues as a robust and significant learning tool, 
which uses a learning bias derived from statistical learning theory (SLT). 
SVMs can be also employed for regression estimation, called as support vector regression (SVR) in 
which the real value functions are estimated. The goal of learning process is to find a function )(xf  as an 

approximation of the value )(xy  with minimum error, which is based on the available independent and 

identically distributed data, i.e:  
 (1) )(),(),...,,( 11 RYRXyxyx n

mm ⊆×⊆⊆
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The approximate function is determined by a small subset of training samples called support vectors 
(SVs). A specific loss function called einsensitiv−ε loss is developed to make a sparseness property for 
SVR (Figure 1). 
In order to learn the non-linear relations by linear 
machines, it is needed to select a set of non-linear 
features and to rewrite the data in the new 
representation; that is equivalent to applying a fixed 
non-linear mapping of the input space to a feature 
space in which the linear machine can be used. 
Therefore, the considering hypothesis set (i.e. linear 
functions in the feature space) will be functions of the 
type:  

    RbFW ∈∈ ,  
 

Where FX →:φ is a non-linear mapping from input 

space to some feature space. Finally, the following equation will be concluded; 
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If inner product >< )(),( xxi φφ  is computed in the feature space as a function of the original input points 

in a direct way, the explicit mapping of data will not be required. This implicit computation method is 
called Kernel method. A Kernel function for all Zzx ∈,  can be illustrated as follows: 

)(),(),( zφxφzx =K                                                                                                       (3) 

Linear, polynomial, sigmoid and radial basis functions (RBF) are some common Kernels. Eventually, by 
substituting the inner product >< )(),( xxi φφ  with a suitable Kernel function the approximate function 

will be obtained as follows: 
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2.2.   Response surface model (Polynomial)     
Response surface modeling techniques were originally developed to analyze the results of physical 
experiments to create empirically-based models of the observed response values. Response surface 
modeling can be written in the following form: 

 (5) 
 

where )(xy  is the unknown function of interest, )(xf  is the polynomial approximation of x , and ε  is 

random error that is assumed to be normally distributed with mean equal to zero and variance 2σ . At 
each observation the error, iε , is assumed to be independent and identically distributed. The polynomial 

function, )(xf , used to approximate )(xy  is typically a low order polynomial, which is assumed to be 

either linear, e.g. (6), or quadratic, e.g. (7): 
 

(6) 

                                                                                                              

(7) 

Parameters 0β , iβ , iiβ  and ijβ  of the polynomials are determined using the least-squares regression 

method, which minimizes the sum of the squares of the deviations of predicted values, )(ˆ xy , from the 

actual values, )(xy . In this study, Eq. (7) is used. .  

3. ADAPTIVE SEQUENTIALLY SPACE FEELING META-MODELING 

The formulation of an optimization model, referred to as problem (1), objective function evaluation of 
which requires performance of a simulation model may be represented as below:  
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Figure 1. einsensitiv−ε  Loss function 
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Min )( yf                                                                                                                                                (9) 

Subject to: 

,0)( =xhi    mi ,...,1=     ,0)( ≥xgi    nj ,...,1=     )(xsimy =   

In problem 1, )( yf  is the objective function to be minimized and )(xhi  and )(xgi are the equality and 

inequality constraints of the problem. In order to evaluate )( yf , in many cases, there is a need to use a 

high-fidelity expensive simulation model. Moreover, the mathematical functions and relationships in the 
simulation model, )(xsim , may not be algebraic functions to be used in gradient-based optimization 

techniques. There are also many cases in which the simulation models are some commercial or public 
domain computer packages used as a black box model in the optimization procedure and the modeler may 
not have access to computer codes and routines (functions) of the model. It should be noted that function 

)( yf  may be multimodal with respect to decision vector x  and also some of functions )(xhi or 

)(xgi may be nonsmooth or the feasible space of the problem may be nonconvex. Metaheuristic and 

evolutionary optimization techniques are promising in solving these types of optimization problems as 
they can be easily linked with any simulation model without the need to have access to computer codes or 
details of the function )(xsim . However, metaheuristic algorithms to converge to a good solution may 

require thousands of objective function ( )( yf ) evaluation each needs running the high-fidelity 

simulation model )(xsim . This makes solving problem (1) using a metaheuristic optimization algorithm 

computationally prohibitive. To address this difficulty, the incorporation of meta-models has been 
suggested. The purpose of using meta-models is to approximate the relationship between )( yf  and the 

vector of input decision variables x  by using efficient mathematical models. Therefore, a function 

approximation technique may be used in solving problem (1) wherein approximate function )(
~

yf  is 

optimized instead of optimizing exact function f(y). The optimization problem in this case may be 
expressed as below, referred to as problem (2): 

Min )(
~

yf                                                                                                                                        (10) 

Subject to:                                

,0)( =xhi    mi ,...,1=     ,0)( ≥xgi    nj ,...,1=      

In problem (2),
~
f (y) is used in lieu of the exact function )( yf . Hence, to solve main optimization 

problem (1), we need to determine the surrogate function )(
~

yf . To have an accurate approximation the 

following condition should be satisfied (Mousavi et al. (2010)): 

Xxff ∈∀≤− ,
~

ε                                                       (11)  

where ε is the accuracy parameter of approximation and X  is the search space of problem (1). In order to 
obtain the required precision for function approximation used in the optimization problem (2), there is no 
other way but to design enough experiments to fill the search space uniformly. These experiments are 
used to construct the meta-model used as a function approximator. Therefore, one could say that D  
experiments are needed, which means that the function )( yf  has to be evaluated for D  times. In other 

words, in order to get the approximate function
~
f (y) in problem (2), a set of experiments known as 

( )( ){ },(, kkD xsimfxS =  ,,...,1 Dk =  should be prepared which requires D  times of evaluating function 

f . This problem is referred to as problem (3) which is the problem of design of experiments.  

The procedure starts with generating a number of input-output data in the search space, just enough to 
construct an approximate surrogate model. The experiments are designed randomly and the function 
f(sim(x)) is evaluated for each experiment through performing the original simulation model (design of 
experiments and function evaluation, problem (3)). A meta-model is trained using the data which can be 
used for approximating function f (function approximation that is referred to as problem (2a)). Minimum 
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value of approximate function
~
f is obtained using the PSO algorithm (approximate function optimization, 

problem (2)). This value will be almost the same as the minimum value of the exact function f, if the 
approximation procedure has been properly worked out. To verify this, one should evaluate the error of 

the approximation ( ε ) between
~
f and f for the solution of problem (2). If ε  is small enough, there is a 

high chance for the located minimum value of 
~
f  in problem (2) to be a near-optimal solution for the 

main problem (1); Otherwise, the trained meta-model may have not been able to learn and approximate 
the exact function f accurately. If so, the solutions obtained for problem (2) are not taken as the solutions 
of problem (1) but just some representatives of the gaps in the search space of the problem where there is 
not enough number of experiments and thus more experiments around the solutions should be designed. 
These new experiments are added to the former set of experiments, SD, and the procedure is iterated until 
the whole search space of the problem and especially the regions that good solutions of the main problem 
(1) are in is covered with the required intensity of data.  

The main feature of the proposed methodology is to consider the problems of design of experiments 
(function evaluation), function approximation and function optimization in a combined and related 
process. The relation between the different parts of 
the problem solving procedure is shown in Figure 2.  

4. ATRAK RIVER BASIN WATER 
ALLOCATION PROBLEM 

Optimum water allocation planning in Atrak river 
basin system in north-east of Iran has been 
considered as the case study problem in this research. 
To adequately simulate different complex 
institutional, hydrologic and socio-economic 
relationships in the river basin system under study, it 
is desirable to use a generalized river basin DSS as 
the simulator engine. MODSIM, a generalized river 
basin simulation model (Labadie, 1995) has been 
selected for this purpose. 

Taking advantages of MODSIM’s custom coding 
features, MODSIM has been already embedded in a 
PSO algorithm to solve a river basin system 
optimization problem (Shourian et al. 2008). 
Deciding on the size of water resource projects and 
how water resources should be allocated over time 
and space considering coordinated operation of the 
system components are some challenging issues in 
management of the basin, which could be dealt with 
by formulating a large scale optimization model for 
the Atrak river basin system. The schematic 
representation of the system in MODSIM’s graphical 
user interface is shown in Figure 3.  
As seen in Figure 3, there are 13 reservoirs (red 
triangles) in the basin among which  Ghordanlu, 
Darband, Garmab, Amand, Chaily, Chandir and 
Sumbar reservoirs are not constructed yet; so they have 
to be sized. Also, relative priorities of objective 
reservoir storages are operational variables through 
which the network flow program in MODSIM decides 
whether water stored in reservoirs in a time period 
should be released to meet water demands of that time 
period or it should be kept in the reservoirs for future 
uses. These priorities indicate the significance of 
storing in or releasing water from reservoirs in every time step in comparison with the priorities of the 
water demands. Therefore, there are two main sets of decision variables which design variables include 

Figure 2. Relation between different parts of the 
proposed methodology for meta-modeling 

(Mousavi et al. (2010)) 

Table 1. minimum and maximum amount for 
design variables 

Dam Darband Garmab Ghordanlu 

Maximum 10 MCM 10 MCM 50 MCM 

Minimum 40 MCM 5 MCM 5 MCM 

 

Figure 3. Representation of Atrak river basin in 
MODSIM’s GUI 
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the sizes of unconstructed dams and operational variables contain the relative priorities of objective 
reservoir storages.    

4.1. Results   
The PSO-MODSIM model was performed first to 
solve the optimal water allocation problem of 
Atrak basin with parameter values as 10 particles, 

1.0min =w  , 2.1max =w  and 75.11 =C , 

25.12 =C  and maximum iteration number of 50. 

Table 1 presents minimum and maximum values 
of design variables. Upper and lower bounds of 
priorities were also set as 10 and 1, respectively.    

The problem was also solved by ASSF approach 
using SVM and Polynomial meta-models. The 
meta-models started with 200 initial random data. 
Table 2 reports the solutions found by the two 
meta-models using 30 particles and 3000 
iterations. The results reported are the best 
solutions obtained among 10 runs. 

As seen in Table 2 both PSO-MODSIM~SVM 
and PSO-MODSIM~POLYNOMIA models have 
been able to find the solutions which are the same 
as that of PSO-MODSIM model. The PSO-
MODSIM~SVM has, however, required a less 
number of function evaluations compared to the 
PSO-MODSIM~POLYNOMIAL. This seems to 

be reasonable as the accuracy of SVM with mean square error (MSE) of 537.5 −E  has been much better 
than that of Surface response model with MSE equal to 0.00188.            

Figures 4 and 5 show prediction versus actual values of the objective function for PSO-MODSIM~SVM 
and PSO-MODSIM~POLYNOMIA models.    

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

5. DISCUSSION AND CONCLUSIONS 

In this study the PSO algorithm was linked first to the MODSIM DSS resulting in PSO-MODSIM model 
used in solving the problem of optimum water allocation of Atrak River Basin in north-east of Iran.  
Two surrogate models of Support Vector Machines (SVMs) and Polynomial response surface were then 
used within the adaptive sequentially space filling (ASSF) meta–modeling approach. The results showed 
that although both meta-models are efficient in reducing the PSO-MODSIM model's computational 

Table 2. Optimal water allocation at Atrak basin 
using Adaptive Sequentially Space Feeling meta-
modeling technique 

 

Figure 4. SVM-based prediction (y-
axis) vs. actual values of the objective 

function (x-axis) 

Figure 5. Polynomial-based prediction 
(y-axis) vs. actual values of the 

objective function (x-axis) 
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burden, SVM performed better than the other one in terms of saving in the number of function 
evaluations required to solve the problem. 
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