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Abstract: At a time when Integrated Assessment Modelling is increasingly providing the scientific basis for 
policy development in relation to air quality and climate change, scientists and modellers are facing a dilemma: 
How can we effectively address uncertainty? Whereas policy makers demand quantifications of uncertainty 
from these state-of-the-art models, the increasingly complex and inter-dependent scientific domains and 
spheres of human activity captured by the models means that scientists can rarely provide better than 
qualitative representations of uncertainty. Using the context of the UK Integrated Assessment Model we 
present a conceptual framework within which uncertainties in different components of integrated assessment 
models can be classified. We show how an hierarchy of uncertainties can be identified which will assist policy 
makers in understanding where an uncertainty arises and to what extent it may impact upon policy 
development. Policy makers must still make the decisions. This generic conceptual framework will help 
scientists and modellers to provide policy makers with an understanding of uncertainties involved whilst 
highlighting that models are only heuristic tools designed to help make the decision and understand the 
potential impacts of that decision in an inherently uncertain world. 
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1. INTRODUCTION 

At a time when Integrated Assessment Modelling (IAM) is increasingly providing the scientific basis for policy 
development in relation to air quality and climate change, scientists and modellers are facing a dilemma: How 
can we effectively address uncertainty? Whereas policy makers demand quantifications of uncertainty from 
these state-of-the-art models, the increasingly complex and inter-dependent scientific domains and spheres of 
human activity captured by the models means that scientists can rarely provide better than qualitative 
representations of uncertainty. To emphasise this problem the EC4MACS uncertainty review concluded that 
“the greatest uncertainty is in quantification of the uncertainties themselves.” [EC4MACS, 2010]. Moreover, 
uncertainty tends to be addressed in a very fragmented way; either quantitatively or qualitatively; usually only in 
parts of the models (eg. emissions inventories; costs/benefits etc.); often ambiguously and confused with model 
sensitivities or scenario analyses; and probably inadequately. 

Current techniques for addressing uncertainty in the context of policy development include HAZard and 
OPerability studies (HAZOP), which can be used as a risk assessment technique to help identify areas of 
uncertainty, including assumptions and external factors are not directly modelled, for example in negotiation of 
the Gothenburg Protocol [ApSimon et al., 2002]. Other techniques use uncertainty matrices which can capture 
knowledge related uncertainty [Walker et al., 2003; Petersen, 2006], or Artificial Neural Networks which 
analyse a range of parameter values for multiple influences [Carnevale et al., 2009]. Cullen & Frey (1999) 
provide an extensive handbook of probabilistic techniques for exposure assessment. 

Using the context of the UK Integrated Assessment Model (UKIAM) [Oxley et al., 2003a; Oxley & ApSimon, 
2007] – developed under the auspices of the UN/ECE Convention on Long-Range Transboundary Air Pollution 
(CLRTAP) – we present a conceptual framework within which uncertainties in different components of 
integrated assessment models can be classified (empirical, mathematical, virtual, perceptual etc.).  

2. CURRENT LITERATURE 

Since uncertainty exists at all levels from the empirical through to value-driven responses to policy it is not 
possible to present an exhaustive review of the literature in this paper. However, others have published 
extensive literature reviews in more focussed aspects of integrated assessment such as Critical Loads 
[Skeffington, 2006] or road traffic forecasts [Jong et al., 2007]. 

The diversity of different data and simulation based components which constitute an integrated assessment 
model such as the UKIAM, GAINS [Amann et al., 2011] or other similar models (for example, see 
http://niam.scarp.se/), has given rise to a plethora of literature covering specific aspects of integrated 
assessment. These uncertainty assessments include parameter uncertainty in atmospheric dispersion models 
[Alcamo & Bartnicki, 1987; Tost et al., 2010], atmospheric chemistry and nitrogen deposition [Derwent, 1987; 
Sutton et al., 2008], Critical Loads and natural ecosystems [Reinds & de Vries, 2010; Skeffington, 2006; 
Wolniewicz & Aherne, 2010; Zak et al., 1997; http://cldm.defra.gov.uk/Uncertainties.htm] and uncertainties in 
national emissions inventories [Passant, 2003; Bush et al., 2010]. In relation to road transport alone there are 
many assessments, for example in relation to transport emissions [Kioutsioukis et al., 2004; Kouridis et al., 
2010], non-exhaust emissions [Stocker & Carruthers, 2007] and traffic forecasts [Jong et al., 2007; Zhao & 
Kockelman, 2001], whereas de Haan & Keller (2004) present an approach to modelling fuel consumption which 
attempts to avoid uncertainties resulting from individual driving behaviours. In relation to integrated assessment 
models Schoepp et al. (2005) address the uncertainty of emissions estimates in the RAINS model, and Oxley et 
al. (2011) highlight uncertainties which emerge from the integration of models of spatial resolutions. 

However, few of these uncertainty assessments (with exceptions such as Mathijssen et al., (2007)) adequately 
address the potential significance of uncertainties in the context of trans-disciplinary policy development and the 
often far greater uncertainties in scenario development and the interpretation of effects by policy makers. For 
this reason the framework described below shows how an hierarchy of uncertainties can be identified which will 
assist policy makers in understanding where an uncertainty arises (monitoring data, process representation, 
scenario definition etc.) and to what extent it may impact upon policy development. 

3. TOWARDS A CONCEPTUAL FRAMEWORK 

In preference to trying to always quantify uncertainties there should be an attempt to understand the 
implications of uncertainties from a given perspective (in this case policy making supported by IAM). It is of 
course significant where different uncertainties occur. Uncertainties in deposition rates for different vegetation 
may be quantifiable and of high significance to atmospheric dispersion modellers (eg. Sutton et al., (2008)) but 
these may have little impact upon scenario analyses where there may be greater uncertainties in projected 
emissions, scenario definitions and abatement costs. In the former there is interest in increasing the precision of 
dispersion models whereas in the latter the interest will be more in the reality of deposition patterns in relation to 
the scenarios and potential impacts. A conceptual framework within which different types of uncertainties can 
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be located and put in context in 
relation to the observer’s perspective 
is therefore helpful in communicating 
an understanding of the implications 
of uncertainties to policy makers. 

A conceptual framework developed 
in the context of hydrological 
resources and desertification in the 
Mediterranean [Oxley et al., 2003b] 
provides the basis for the conceptual 
framework for understanding 
uncertainty described here (Figure 1). 
Similar issues are relevant for 
effective communication of scientific 
meaning to policy makers. Whereas 
any component of IAM can be 
classified as empirical (data), 
theoretical (models), virtual (IAM’s) 
or perceptual (scenarios), the same 
component can be identified as 
contributing to historical memory or 
projected futures, and/or providing 
utility in either decision support or 
communication. Finally, Hammond’s 
(1978) six modes of thought capture 
all IAM components from the highly 
experimental (data), through 
analytical (modelling) to highly 
intuitive (policy scenarios). This 
framework has been used as the basis for classifying IAM components elsewhere [Oxley & ApSimon, 2007]. 
The categories described by Figure 1 are not rigid but serve to distinguish characteristics of different 
components of IAM. For example, whereas empirical studies may be analytical, can describe historical 
conditions, are useful for communication, and provide raw data for models, they cannot directly address 
projected futures; this is achievable indirectly by the use of empirical data by models (theoretical) and decision 
support tools (virtual). 

Within this framework the different areas of uncertainty in IAM can begin to be located, identifying which 
uncertainties are directly related to the overall model itself (UKIAM), component models (FRAME dispersion 
modelling), input data (emissions) etc. An example of such a distinction is provided by Amann et al. (2011) in 
relation to the GAINS model where source-receptor matrices from EMEP provide the basis for defining 
reduced-form approximations within GAINS. There is uncertainty in these approximations (R2≈0.99) [1] but only 
in relation to the EMEP calculations; these uncertainties are attributable to GAINS, but any uncertainties (eg. 
atmospheric chemistry) in the EMEP calculations themselves are not. This highlights the need to be explicit 
about both the perspective of the observer and how different uncertainties relate to that perspective. 

4. MAPPING THE UKIAM ONTO THE CONCENTUAL FRAMEWORK 

Some of the model components creating uncertainties captured by and/or attributable to the UKIAM (and the 
BRUTAL sub-model for road transport [Oxley et al., 2009]) are listed in Table 1, classifying them in relation to 
source, type, use etc. Thus we can identify attributes of each area of uncertainty in relation to the conceptual 
framework. Uncertainties may be definable as: 

• Empirical (eg monitoring data, distribution of emissions) 
• Theoretical (eg mathematical representations/models) 
• Virtual (eg. Integrated Assessment Models, output metrics) 
• Perceptual (eg. Scenario definitions, emissions projections, policy impacts etc.) 

                                                            
[1] The coefficient of determination R2 is used in the context of statistical models whose main purpose is the prediction of 
future outcomes on the basis of other related information. It provides a measure of how well future outcomes are likely to be 
predicted by the model. 

 

 
Figure 1 - The conceptual framework underlying the classification of 
uncertainties in IAM (from: Oxley et al., 2003b). Hammond’s (1978) modes 
of though relate to I – True Experiment (Analytical); II – Hybrid Experiment 
(Statistical); III – Quasi-Experiment (Weakly Analytical); IV – Aided 
Judgement (Decision Support); V – Intuitive Judgement (Data known); VI – 
Intuitive Judgement (Data unknown)
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In addition the uncertainties may relate to: 
• Historical memory (eg. monitoring data, expert opinion, perceptions) 
• Projected futures (eg. climate change, human activity, economics, models) 
• Decision support mechanisms (modelling, data, IAM, etc.) 
• Communication mechanisms (eg. IAM, policy fora, UNECE, media, monitoring) 

Finally, depending upon the observer, their ‘mode of thought’ may vary from highly analytical through 
experimental to highly intuitive, potentially greatly influencing the perceived significance of each of the other 
attributes, the balance between the need for precision of data, realistic results and generic applicability [Levins, 
1966], and their requirement for quantifiable or qualifiable interpretations of uncertainty. 

A further degree of complexity becomes evident when examining potential emissions abatement measures, 
where uncertainties may arise in the specification of activity rates, existing abatement technology, and 
applicability and effectiveness of additional measures.  

Thus, an ability to conceptually map uncertainties will begin to identify which aspects of uncertainty in the 
overall ‘system’ are of significance to the observer. It also facilitates the definition of sensitivity scenarios which 
may quantify the extent to which uncertainties within the system may impact upon the overall results. For 
example running scenarios with calibrated or un-calibrated FRAME data (see Fournier et al. (2004)) would 
highlight the sensitivity of UKIAM to FRAME calculations and place uncertainties (both quantifiable and 
qualifiable) in FRAME in the context of potential impact upon UKIAM outputs. 

Having listed selected areas of potential uncertainty these can now be ‘located’ on a conceptual map (Figure 1) 
with an additional level of classification which assumes that empirical components aim to maximise precision, 
modelling components aim to maximise generic applicability, and scenario/output components aim to maximise 
reality; an objective of integrated assessment models is to provide an appropriate balance between reality, 
precision and generality which best communicates the potential impacts of different scenarios to policy makers. 

Using the labels defined in Table 1 these components displaying uncertainties are mapped onto the conceptual 
framework (Figure 2) highlighting the dependencies between components. Separate maps are presented for 
UKIAM and BRUTAL to show how multiple layers of uncertainty maps can be created to capture the many 
different tasks required to complete a fully integrated assessment of any given policy scenario. Using the 

 
Table 1 - Categorisation of selected components of the UKIAM displaying different areas of uncertainty, distinguishing the 
source, type (empirical, theoretical etc.), the mode of thought associated with the uncertainty [Hammond, 1978] ], the tendency 
of the component towards reality, generality or precision [Levins, 1966], the utility of the component in relation to decision 
support or communication, and temporal perspective of the information generated. 
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FRAME model (component D in Table 1) as an example, empirical data underpins the definition of the spatial 
distribution (A) and release height (C) of emissions, a combination of empirical and experimental information 
determines the representation by FRAME of atmospheric chemistry (E) and deposition rates (F), all of which are 
combined to derive atmospheric dispersion (D) patterns; it is these dispersion/deposition patterns that are used 
by UKIAM to calculate total deposition (L), aerosol concentrations (M) and thus exceedance of critical loads 
(K). Additional conceptual maps could be produced to capture, for example: 

• definition of abatement measures based upon activity levels, technology efficiency, applicability etc.; 
• the FRAME model to more fully investigate uncertainties in atmospheric dispersion; 
• the ASAM model to understand the effects of uncertainties at the European scale (which feed into 

Figure 2 as ‘imported contributions’); or 
• other areas where uncertainties are evident (eg. energy, transport or agricultural livestock projections 

which underlie emissions projections). 

Thus it is possible to build up multiple layers of inter-related uncertainty maps which all ultimately feed into the 
interpretation of model outputs for given policy scenarios. 

5. DISCUSSION 

The mapping described above is for explanatory purposes only, identifying selected areas of uncertainty within 
the scope of the UK Integrated Assessment Model. Clearly there are additional layers of uncertainty maps which 
could be included, focussing on the definition of ecosystem distribution (G) or specification of Critical Loads 
(H), the FRAME model (D, E, F) and the influence of spatial distribution (A) and height (C) of emissions 
[Vieno et al., 2010], traffic forecasting (P, V), abatement measures [Entec, 2009] or the ASAM model [Warren 
& ApSimon, 1999; Oxley & ApSimon, 2007]. The complexity of inter-relationships between each conceptual 
map and the potential ‘depth’ of uncertainties within the system relative to results interpreted by policy makers 
(Z) quickly becomes evident; little wonder it has been concluded that the “greatest uncertainty is in 
quantification of uncertainty itself” [EC4MACS, 2010]. 

However, the conceptual framework presented here overcomes this problem by presenting relationships between 
areas of uncertainty in a visual form. Quantifications of uncertainties in specific areas are always of benefit (eg. 
Vieno et al., 2010). The effect of the spatial distribution and height of emission can be quantified in relation to 
source-receptor matrices calculated by the FRAME model but not in relation to the use by the UKIAM of these 
matrices. In the latter case the sensitivity of the UKIAM to different footprints, ceteris paribus[2], can be 
assessed. This cannot equate to a quantification of uncertainty since the sensitivity of the UKIAM to different 
representations of Critical Loads (H) or uncertainties in ecosystem distribution (G) is likely to be different for 
the same degrees of uncertainty displayed within the different components. 

                                                            
[2] “all other things being equal or held constant” 

 
Figure 2 - Mapping of the selected components onto the conceptual framework, distinguishing between (a) the UKIAM 
and  (b) the BRUTAL sub-model. An additional level of classification is highlighted to emphasise which components aim 
(non-exclusively) to maximise precision, which aim to maximise generality, and which are required to be appropriately 
realistic. The lettering of components reflects the labelling described in Table 1. Colours have been used to highlight how 
some different components may be linked. 
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The sensitivity of UKIAM to FRAME source-receptor matrices can be placed in context where the effects of 
uncertainties arising in the definition of scenarios (J), emissions projections (B), background particulates (N), or 
imported contributions (I) may far exceed the sensitivity of the model to FRAME matrices, which would render 
these uncertainties within FRAME relatively insignificant from the perspective of different policy scenarios. 
This is not to suggest that quantification of uncertainty in FRAME may be unnecessary as these are always 
useful for providing a more complete understanding of the dynamics of the system as a whole. 

This conceptual framework is intentionally flexible to the extreme, facilitating the mapping of areas of 
uncertainty, together with linkages between them, in a manner which reflects the perspective and priorities of 
the observer. This will provide the observer with an understanding of uncertainties from their perspective which 
can be compared with equivalent maps from alternative perspectives, thus further enhancing understanding of 
the potential impacts of given policy scenarios. It highlights the linkages between components and the ‘distance’ 
(number of linkages) between different uncertainties and the observer. If, for example, a policy maker needs to 
understand the effect of road transport on aerosol concentrations, uncertainties in traffic projections can be 
quantified in a policy scenario. However, uncertainties in emissions factors (S - Figure 2) cannot; these may 
influence the model outputs, but are combined with and through many other components: with projections (V) 
to calculate emissions from road transport used by UKIAM – with further uncertainties in atmospheric 
dispersion (D) and other projections (B) – to calculate aerosol concentrations (M) which are re-combined with 
traffic emissions to derive roadside (W) and background air quality (X). The policy maker can, however, 
quantify the sensitivity of the results to alternative definitions of emissions factors, ceteris paribus. 

In summary therefore, this conceptual framework enables both developers and users of integrated assessment 
models to map and understand relationships between different areas of uncertainty based upon: 

• the source and type of uncertainty and its relationship to the overall system; 
• its reflection of historical memory or projected futures; 
• its utility in decision support or communication; 
• the objective in relation to maximising precision, generality or reality [Levins, 1966]; and 
• the associated ‘mode of thought’, ranging from the analytical through the experimental to the intuitive 

[Hammond, 1978]. 

Finally, this conceptual framework is not intended to ‘compete’ with other approaches to addressing uncertainty 
(eg HAZOP), but does provide an alternative (visual) and complementary approach which can be used 
alongside, for example, approaches which capture knowledge related uncertainties [Petersen, 2009]. 

6. CONCLUSIONS 

This conceptual framework enables the ‘observer’ (policy maker, scientist etc.) to map different components of 
an integrated assessment model from a perspective which reflects their requirements for understanding 
uncertainty. It highlights the linkages between components and the ‘distance’ between different uncertainties 
and the observer, distinguishing whether an uncertainty is directly quantifiable from the observers’ perspective, 
or whether it is the sensitivity of the system to a ‘distant’ uncertainty that provides the best understanding. 

The generic nature of this framework means that the methodology is transferable. For example, the UKIAM 
may treat emissions projections as extraneous input. However, behind these projections will be a variety of 
models, data, expert opinion etc. which can equally be mapped onto this conceptual framework (with a focus on 
emissions as opposed to effects). Likewise, traffic projections will have emerged from complex transport 
demand models, socio-economic data etc. Very quickly an hierarchy of ‘uncertainty maps’ emerges from which 
the original ‘problem’ of how to deal with uncertainty can be understood in all its complexity. 

Policy makers must still make the decisions. This generic conceptual framework will help scientists and 
modellers to provide policy makers with a better understanding of the uncertainties whilst highlighting that 
models are only heuristic tools designed to help make the decision and understand the potential impacts of that 
decision in an inherently uncertain world. 
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