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Abstract: One of the major challenges to supporting, facilitating and developing wind generated power is
matching supply and demand. Wind generated power is obviously subject to fluctuations due to variation
in the wind. There is also a shutdown mechanism which is employed when the wind becomes very strong
which prevents damage to the turbines. Thus, when the wind is light or very strong, there is no power
generated. Predicting the output from the turbines is currently an important research topic .

In the past, time series analysis and other methods have been employed in order to better understand
the nature of the data. These include ARMA and GARCH models as well as relatively new methods
of detrended fluctuation analysis, (Ward et al., 2009; Boland et al., 2009; Magnano and Boland, 2007;
Kavasseri and Nagarajan, 2004). The behaviour of complex time series, as is the wind farm power output,
and as is seen in the financial sector has been and is currently well researched. Some of these time series
have been found to be non-linear, stochastic and chaotic, and are notoriously difficult to model. There
is evidence however, that there could be some scaling behaviour apparent in these series (Weron and
Przybylowicz, 2000).

The particular objective of this project is to reduce the error in predicting the power supply generated by
wind farms (or the individual turbines) five minutes into the future so that the power company is able to
guarantee the promised power. Currently this is not possible due to the financial risks involved in not
delivering the guaranteed amount. Apart from climatic research, there is not much in the way of research
into spatial correlations where records are available of similar variables at different locations. Since the
temporal nature of the time series is currently being thoroughly investigated by many researchers, this
study explores the possible spatial correlations between wind farms.

This paper describes the investigation into the spatial correlation between five South Australian wind
farms using empirical orthogonal function analysis, (EOF). If there is spatial correlation between farms,
this can be used to better predict what might happen at one farm based upon what has happened at a
different farm at some earlier time. There has also been speculation among experts that power output of
sites along a weather front behave in a similar way.

One of the main difficulties with determining the power output of wind turbines is that wind speed is not
a useful predictor. The wind speed isn’t actually measured at the height of the blades and if instruments
were installed the to measure the wind speed immediately in front of the turbine blades, then the likelihood
of correct measurements would be compromised by their existence.

This study has focused on the spatial correlations between farms and the initial results from this study
indicate that there is evidence of some spatial correlation between some of the farms.
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1 INTRODUCTION

Eigenanalysis, also known as Empirical Orthogonal Function (EOF) analysis, is a technique used for de-
termining the dominant modes of variation in data sets (Hannachi, 2004; Aubrey and Emery, 1983), and
distinguishing between spatial and temporal variation. It is closely related to principal component anal-
ysis (PCA) and Singular Value Decomposition (SVD), although there are subtle differences (Hannachi,
2004). Given a spatial and temporal set of data, as is the wind farm power output data, the method of
eigenanalysis can be used to isolate the temporal variation from the spatial variation in the data.

EOF analysis was initially applied in the social and behavioural sciences but since 1951 it has been widely
used for climate and weather prediction, and to other areas of climatology such as sea level change, sea
surface temperatures, climatology models and for long-term coastal profile evolution models (Craddock,
1975; Aubrey and Emery, 1983; Cahalan et al., 1997; Larson et al., 1999; Chiera, 1999; Giese and Car-
ton, 1999; Uddstrom and Oien, 1999; Kim and North, 1999; Kim and Wu, 1999; Tseng et al., 2000;
Robertson et al., 2000; Walland et al., 2000; Ji et al., 2000; Hannachi, 2004). It has also been used to sep-
arate the temporal and spatial variation in catch and effort data of South Australian commercial fisheries,
(McArthur, 2003).

The method involves calculating the eigenvectors (functions) and associated eigenvalues of the covari-
ance matrix of a given spatial and temporal data set. The eigenvectors are termed ‘empirical orthogonal
functions’, (EOFs) and the set of corresponding eigenvalues are the variance spectra. The first eigenfunc-
tion best describes the data in a least squares sense; the second eigenfunction best describes the residual
of the data in the least squares sense, and so on. In addition, all eigenfunctions are orthonormal, (Aubrey
and Emery, 1983; McArthur, 2003).

The EOFs correspond to a statistically optimal description of the data with respect to how the variance
is concentrated in the functions. The functions are ranked according to decreasing eigenvalues and the
variance typically drops off very quickly, thus only a limited number of the lowest ranked functions are
required to explain most of the variance in the data. This property sometimes motivates the use of EOF
analysis as a data reduction technique or to separate signal from noise. Thus, for an n ×m data matrix,
the first k dominant functions, where k << min(n,m), can be considered to represent the deterministic
part of the data and the remaining functions to represent the noise.

Broadly, the objectives of eigenanalysis are to

a) reduce the dimensionality of the problem by replacing the measured and intercorrelated variables by a
smaller number of uncorrelated variables, (the EOFs), particularly in meteorological applications,

b) to interpret these uncorrelated variables in terms of recognisable physical processes, (Craddock, 1975)

c) separate the spatial and temporal variance in the data.

The process can reduce the dimensionality of a given data set by a factor of ten and the first three or
four functions can generally be used to capture most of the variation in the data. There is no set rule for
selecting the truncation point, although in practice the scree plot can inform the decision.

One of the main problems with this analysis is that it can be difficult to identify the underlying physical
processes that the EOFs represent. However, reducing the dimensionality simultaneously results in re-
moval of the ‘noise’ from the data set, and provides a good basis for regression analysis, assuming the the
material is amenable to linear treatment (Craddock, 1975), and that there are predictor variables available.

The technique is applied to five wind farms from South Australia, to determine if spatial correlation is
evident.

2 METHOD

Given a set of data composed of both temporal and spatial information, let D be the matrix with n rows of
temporal data and m columns of spatial data. That is, for each location, there is a column of measurements
taken at consecutive time steps. In order to apply the EOF analysis, we need a square positive definite
matrix, so firstly the covariance matrix of D is determined. Given that D is an n×m array, two covariance
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matrices can be formed: one will have dimensions n×n and the other m×m. These will be the temporal
and spatial covariances matrices respectively.

2.1 Background Theory to EOF

Let A be a positive definite symmetric n × n square matrix. The associated λi for i = 1, 2, . . . , n are
positive real eigenvalues and the vi are orthonormal eigenvectors of A. From spectral decomposition
theory, the following equations hold:

vi.vi = 1
vi.vj = 0 for i 6= j

A = λ1v1vT
1 + λ2v2vT

2 + . . . + λnvnvT
n (1)

Avi =




n∑

j=1

λjvjvT
j


vi = λivi (2)

since vjvT
j = I, where vT

i is the transpose of vi.

The n × m data matrix contains five minute power output values for each farm. The positive definite
symmetric covariance matrices are calculated using the following equations (Aubrey and Emery, 1983),
where X is the data set with the arithmetic mean for each farm removed.

The spatial mean is removed from the data and the covariance matrices (equation 3) calculated. The
eigenequations are then solved and the dominant functions are identified. A scree plot 3 is constructed
to obtain a visual indication of the degeneracy of the eigenvalues, and the cumulative contribution to the
variance is calculated to determine the number of functions required to reconstruct the data sets, with the
noise removed.

Let Ct, be a positive definite symmetric n×n temporal covariance matrix. Then, Cx will be the associated
m×m spatial covariance matrix.

Cx =
1

m n
XXT

Ct =
1

m n
XT X. (3)

The spatial and temporal eigenfunctions, vk and uk respectively, for k = 1, 2, . . . , N where N =
min(n, m), are determined by solving the following two equations for the covariance matrices Cx and
Ct:

Cxvk = λkvk and (4)
Ctuk = λkuk. (5)

The original data set can be reconstructed using equation (6), by limiting the reconstruction to the first
l < N functions. In general the first three to five eigenfunctions explain 95% of the variability, and
in so doing, one can effectively eliminate the noise from the data. For this analysis, the number of
eigenfunctions required was determined by the degeneracy of the eigenvalues (degenerate eigenvalues
are those which are not distinguishable) and it was determined that the first three functions (l = 3 ) were
sufficient to explain > 95% of the variation. Let X x,t be the matrix containing the reconstructed data;

Xx,t =
l∑

j=1

(√
(λjmn) ujvT

j

)
. (6)

The spatial mean is removed from the data and the covariance matrices (equation 3) calculated. The
eigenequations are then solved and the dominant functions are identified. A scree plot is constructed to
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Figure 1. Scree plot illustrating the degeneracy of the eigenvalues.

obtain a visual indication of the degeneracy of the eigenvalues, and the cumulative contribution to the
variance is calculated to determine the number of functions required to reconstruct the data sets, with the
noise removed.

2.2 Data

Data has been provided by the Australian Energy Market Operator, AEMO, and consists of 219 days of 5
minute power output data (approximately 63,000 data points) from five separate farms in South Australia.
Confidentiality prohibits the association of the data to the farm, hence the farms are identified by number.

3 RESULTS

In this study we are primarily interested in spatial correlations; this section describes the results of the
spatial analysis for the five farms.

The eigenvalues (λk), (k = 1, 2, . . . , 5) are identical for equally ranked spatial and temporal functions
and each λk represents the amount of variance in the direction of each of the orthogonal EOFs. Thus the
contribution to the variability of the data by each of the EOFs is given by the eigenvalues. The scree plot,
Figure 1, displays the size of the eigenvalues in order of their rank, clearly showing the degeneracy which
indicates the number of functions required to reconstruct the ‘noiseless’ data.

The contribution of each of the first three eigenfunctions to the variability of the data is given by the first
three eigenvalues which are:

λ1 = 71.7%, λ2 = 17.8%, λ3 = 6.9%.

The first three eigenfunctions are shown in Figure 2. It can been seen that the first eigenfunctions are all
positive for each of the farms. This indicates some spatial similarities, although it isn’t necessarily possi-
ble to identify the corresponding physical attributes. The second eigenvalues are strong and positive for
farms one and three, and negative for the others. This indicates that a secondary physical property, which
explains approximately 18% of the variation in the data, is different for farms one and three compared to
the other three farms. The third eigenfunction indicates that farms two and four have similar properties
as do three and five. However, since these functions explain less than 8% of the variation, not too much
importance can be placed upon this.

In summary, there is evidence that farms one and three have correlated data, and that the others also have
some correlation, although not as strong. Once the farms have been identified, factors such as wind speed
and direction at farm A, and the position and range of the weather front can be used to help predict the
power outlet at farm B. This information is valuable in enabling predictive capabilities from one farm to
another and reducing the error in predicting power outlet.
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Figure 2. The first three spatial eigenfunctions for the five farms.

It is probable that a multiplicity of physical factors cause the variation in the observed data, and for this
reason it is often difficult to isolate and identify individual factors, and thus assign physical properties to
the EOFs. However, the results indicate that there is some correlation between the sites and therefore this
information can be used to enhance the predictability of the power outlet from one farm based on another
with some degree of confidence.

4 CONCLUSIONS

Eigenanalysis of the wind farm data has shown that there are spatial correlations between the five farms,
which is possibly related to their physical location. There has been suggestion (pers. comm.) of similar
wind patterns occurring along lines of weather fronts, so this could be related to the correlation indicated
between farms one and three by the second eigenfunction. The eigenvalues indicate how much variation
in the data is explained by each of the orthogonal eigenfunctions, which are approximately 72%, 17%
and 7% respectively.

The analysis has shown that there is a high probability that the measured power output from one farm can
be an used as an indication of the power generated by a second farm. In addition, this technique can be
used to remove noise from the data, and to separate the spatial and temporal variation in the data set. This
itself is a valuable process, as the spatial correlation can be identified between farms.
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