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Abstract: Application of game theoretic methods in resource management has become quite a well de-
veloped area over the last decades. An extended review of papers devoted to this aspect of resource
management can be found in Schreider et al. (2010). Among the papers cited there, two important con-
tributions to cooperative game application to resource management should be mentioned, and these are
the papers by Filar and Gaertner (1997) where cooperative game is used in modeling greenhouse gases,
and Dinar (2004) where a cooperative approach is used to understand the decision making process and its
consequences on a drainage basin. Many researchers stress the importance of cooperation and apply the
cooperative game theory in order to treat the problem of optimal distribution of limited resources. In our
opinion, the two most important research questions in these areas are firstly, what mathematical models
are most suitable in describing the problems and, secondly, how realistic are the mechanisms which are
available to enable stakeholder to realize this cooperation in practice. In the present paper, the problem of
finding an optimal fertilizer application using game theoretic approach to the Hopkins River catchment,
Western Victoria, is considered. The players (agents) are local farmers who apply a certain amount of fer-
tilizers in order to increase household revenue, but this also has a negative effect since it tends to increase
the amount of phosphorus exported from paddocks to downstream waterways. Therefore, the relevant
strategies selected by farmers are the quantities of phosphorus which should be applied to their lands.
The amount of phosphorus applied by each player also defines the payoff or objective function for the
player. Each payoff function contains three components. The first is the positive revenue obtained from
the crop and the second is the negative component characterizing the dollar value spent on purchasing fer-
tilizers. The damage caused by the blue green algae blooming in the catchment, which is also expressed
in dollar value, is a third negative component in the payoff function. The model proposed in the previous
paper (Schreider et al. 2010) treats solutions of the game in a noncooperative way (as a Nash equilibrium)
and as a set of Pareto optima which characterize the semi–cooperative equilibria in the sense that players
made a binding agreement not to deviate from their agreed choice of actions which would lead to better
outcomes to all players. In Section 1, we provide the game theoretic formulation of phosphorus pollution
of waterways which was first expounded in Schreider et al. (2010) where the formulation of the two
notions of equilibria were discussed. Section 2 looks at using cooperative game theory based on forma-
tion of coalitions to model fertilizer application and presents a characteristic function for this game. We
then give a brief discussion of the Shapley values for all players in the game. In Section 3, we apply the
preceding results to the Hopkins River case study and a detailed comparison between the noncooperative
and cooperative solutions to the case study will be given in Section 4. Finally the paper is concluded in
Section 5 with a summary of the major outcomes of this study and suggestions for further research.
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1 GAME THEORETIC FORMULATION OF PHOSPHORUS POLLUTION OF WATERWAYS

The game theoretic formulation for the problem considered in this paper was provided in full extend
in Schreider et al. (2010). The important thing, which should be reminded here, is that the strategies
for each player (farmer) are defined as an amount of Phosphorus he/she introduced annually on his/her
property. Then the utility function was defined as a combined farmer’s revenue constituted from crop pro-
duction revenue and (negative) value spend for purchasing fertilisers. The crop revenue was calculated as
a production times market prices computed for each crop produced by the player, where the production
were calculated using the Cobb-Douglass production function of two production factors: water and fer-
tiliser (Phosphorus). The utility function also has an environmental component, computed as a negative
downstream impact explained by use of Phosphorus by the players. The negative environmental impact
selected for this study is blue–green algae blooms due to phosphorus exported from the farmlands into
the river catchment system. Thirty farms (n = 30) were chosen from the region and the three farming
enterprise were wool, prime lamb (P lamb) and regular crops (crop) comprising wheat, oats and canola.
All these enterprises benefitted from application of phosphorus. The reader is directed to Schreider et.al.,
(2010), for a detailed discussion on how these parameters were estimated and on the rationale behind
them. The columns 2 and 3 of table 1 display the Nash equilibrium and Pareto optimum solutions for
phosphorus application (kg/ha) with γ = 0.115 for later comparisons. Among the plethora of possible
Pareto solutions, we have selected the one using equal weights since intuitively, this is the Pareto optimum
that would maximize the sum of utilities.

2 COOPERATIVE GAME THEORY BASED ON COALITION FORMATION

In Section 1, we investigated the Hopkins catchment pollution problem, i.e. the blue–green algae blooms
caused by phosphorus exported from farms into the surrounding river system, as a non–cooperative game
involving several farmers. The game’s objective was to optimize the payoff given by (2) when an in-
dividual player is pitted against all other players. The solutions to the non-cooperative game are the
combinations of strategies by each player which satisfy Nash equilibrium, or Pareto optimum. On the
other hand, the formation of coalitions and guaranteed payoff to each coalition are the main components
in the theory of cooperative game based on coalition formation. The key problem considered in these
games is not necessarily on how to obtain the optimal strategies but rather on how to distribute the payoff
among members of a coalition so that no member would feel compelled to leave the coalition. Note here
that we assume that the payoff is a transferable utility, i.e. it can be added and subtracted in the usual
separable way. We next define the characteristic function ν(K) : 2N 7−→ R, where 2N is the power set
of N , associated with a cooperative game. A characteristic function is a real valued function defined over
the set of all possible coalitions and forms a vital ingredient of a cooperative game. The value ν(K) can
be interpreted as the joint utility e.g. worth, power, income, which the coalition K is guaranteed if its
members act cooperatively together as a group. Characteristic functions must satisfy

ν(∅) = 0 and ν(A ∪B) ≥ ν(A) + ν(B) (1)

for any mutually exclusive coalitions A and B. The second condition stated that a larger coalition will be
guaranteed an equal or larger payoff than the sum of individual payoffs in case the players splintered into
smaller coalitions. This property is commonly referred to as the superadditivity property. In a coalitional
game, the payoffs to the players are represented by the vector x = (x1, x2, . . . , xn). An admissible x
which satisfies the following two conditions is known as an imputation under the characteristic function
ν(.):

xi ≥ ν({i})foralli; (2)

n∑
i=1

xi = ν(N). (3)

The first condition is the condition of individual rationality and is a reasonable assumption to make;
otherwise, each player will not be induced to join a coalition. The second condition is called the condition
of group rationality. To see that it is reasonable assumption, assume that

∑n
i=1 xi < ν(N). Then the
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group can achieve ν(N) together and share it between themselves in such a way that each can receive
an amount x̄i > xi. On the other hand, if

∑n
i=1 xi > ν(N), then the group will be distributed a total

amount which is larger than what is at their disposal (Vorob’ev, 1977).
Optimum solutions in cooperative games are obtained by finding the best set of imputations for the game.
There are many methods that are available to accomplish this such as obtaining the core and stable
sets (c.f. Petrosjan and Zenkevich, 1996). To calculate a fair allocation of the total gain to the players,
we will use the Shapley values, which are well known to have attractive properties of a fair allocation
(Shapley, 1953). The Shapley value to Player i ∈ N under the characteristic function ν(.) is given by

xi =
∑

K⊆N−{i}

|K|!(|N | − |K| − 1)!
|N |!

(ν(K ∪ {i})− ν(K)) (4)

where |K| refers to the cardinality of the coalitionK and the summation is over all coalitionsK excluding
Pi.

2.1 The characteristic function of the phosphorus pollution game

In this section, we formulate the characteristic function for our phosphorus pollution game. This charac-
teristic function incorporates both the NEP and Pareto equilibria discussed earlier in Section 1. First of
all, recall that the payoff for the simplified game is

ui(s) =
R∑
r=1

[
prQ

rAri [α
r
i q
r
i + α0

i ]
γ(W r

i )1−γ − FAriαri

−
N∑
j=1

βijEA
r
j(α

r
j(1 − qrj ) − L)I(αrj(1 − qrj ) > L)

]
(5)

where

γ = Cobb-Douglas constant
qri (α

r
i , t

r
i ) = proportion of phosphorus that is released into farmland devoted to crop r;

1− qri (αri , tri ) = proportion of phosphorus that flow into the effluent river systems as a
consequence thereof;

E(tri ) = environmental impact manifested as cost per unit application of
phosphorus;

Ari = total quantity of land devoted to crop r by Pi;
W r
i (tri ) = amount of water available at time tri ;

Qr(tri ) = quantity of crop r produced per unit area per unit phosphorusγ per unit of
water1−γ ;

pr = price (revenue) obtained per unit of crop r sold;
α0
i = base quantity of phosphorus in soil of user i per unit area;
F = price per unit of phosphorus fertiliser ;
βij = environmental influence indirectly induced on Pi by Pj

and L = toxicity threshold level, i.e. the amount of phosphorus in the effluent river
systems above which there will be a negative environmental impact

and the Pareto objective function is

Z(s) =
n∑
i=1

wiui(s) (6)

where s = (α1, α2, . . . , αn) and wi > 0∀i,
∑n
i=1 wi = 1. The Nash solution ŝN = (α1, α2, . . . , αn)

for crop r is the value that optimizes ui(s) for all i and is given by equation (9) in Schreider et al. (2010).
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The Pareto solution ŝP = (α1, α2, . . . , αn) for crop r is the value that optimizes Z(s) and is given by
equation (10) (ibid). (Note that we can ignore the w′is in this equation if wi = 1

n ∀i and this is what will
be assumed here.)
Consider the coalition

= {i1, i2, . . . , ir} (7)

and let the notation αK stand for

αK = (αi1 , αi2 , . . . , αir ). (8)

Define the vector

α̂K,P = (α̂i1 , α̂i2 , . . . , α̂ir ) (9)

where α̂ij is given by (9) from Schreider et al. (2010) and the vector

α̂Kc,N = (α̂j1 , α̂j2 , . . . , α̂jn−r
) (10)

where α̂jk is given by (10) from Schreider et al. (2010) and

Kc = {j1, j2, . . . , in−r} (11)

is the counter–coalition to K. Define the set function ν(.) : 2N 7−→ R by

ν(K) =
∑
i∈K

ui(α̂K,P , α̂Kc,N ). (12)

Proposition. The function ν(.) is a characteristic function, i.e. it satisfies the following two conditions:

1. ν(∅) = 0.

2. ν(A ∪B) ≥ ν(A) + ν(B) for any mutually exclusive setsA andB.

Condition 1 is easily seen to be satisfied by the definition of ν(.). Let A = {i1, i2, . . . , im} and B =
{j1, j2, . . . , jn} where A ∩B = ∅; to prove that the second assumption holds, we are required to show∑

i∈A∪B
ui(α̂A∪B,P , α̂(A∪B)c,N ) ≥

∑
i∈A

ui(α̂A,P , α̂Ac,N )

+
∑
i∈B

ui(α̂B,P , α̂Bc,N ). (13)

Since Z(α̂K,P , αKc) = maxαK
Z(αK , αKc) it follows that∑

i∈A∪B
wiui(α̂A∪B,P , α̂(A∪B)c,N ) = max

αA∪B

∑
i∈A∪B

wiui(αA∪B , α̂(A∪B)c,N )

= max
αA∪B

∑
i∈A

wiui(αA∪B , α̂(A∪B)c,N )

+ max
αA∪B

∑
i∈B

wiui(αA∪B , α̂(A∪B)c,N )

≥ max
αA

∑
i∈A

wiui(αA, α̂Ac,N )

+ max
αB

∑
i∈B

wiui(αB , α̂Bc,N )

=
∑
i∈A

wiui(α̂A,P , α̂Ac,N )

+
∑
i∈B

wiui(α̂B,P , α̂Bc,N ). (14)

Finally, setting wi = 1
N ∀ i = 1, 2, . . . , N in both sides of equation (14) and canceling completes the

proof of the proposition.
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3 APPLICATION OF COALITION GAME-THEORETIC MODEL TO THE HOPKINS RIVER CASE
STUDY

In this section, we outline our approach to the computation of Shapley values for farmers in the Hopkins
River catchment area. Deng and Papadimitriou (1994) have shown that the task of computing Shapley
values is an NP–complete problem. To obtain the Shapley values defined by (12) for n = 30 players
involves calculating 230 − 1 different characteristic function values corresponding to the total number
of possible coalitions which contain players in them. This is a gargantuan task due to the restriction on
the number of variables and vectors allowable in programming software tools such as MATLAB. Even
if this was possible, running a program containing such an enormous number of variables would utilize
a huge amount of CPU running time. Our approach in calculating Shapely values is to calculate each
characteristic function first and then update the Shapely values for the 30 players. Using this approach
we don’t have to save the characteristic functions and overwrite them after updating each Shapley value.
Therefore, we just have to deal with a single characteristic function each time. For example, when K =
{1, 2, 3}, ν(K) is calculated and if i is in K, it is multiplied by (|K − 1|! (N − |K − 1| − 1)!) /N ! and
then added to xi, the Shapley value for Pi, i ∈ K; if i 3 K, it is multiplied by (|K|! (N − |K| − 1)!) /N !
and is deleted from xi. The Pseudocode of the steps outlined are as follows:

for K ⊂ {1, 2, ..., 30}
Compute ν(K)
for i = 1 to 30
if i ∈ K
xi = xi + ν(K) (|K − 1|! (30− |K − 1| − 1)!) /30!
else
xi = xi − ν(K) (|K|! (30− |K| − 1)!) /30!

end
end

end

The program used to calculate Shapley values is implemented in MATLAB 7.1 on a PC equipped with
INTEL 2 Core, 1.83- GHz CPU and 512 MB RAM memory. The program took about 603700 seconds (7
days) to run. The Nash and Pareto payoffs for all players based on the Nash equilibrium, Pareto optimum
solutions and Shapley values are displayed in Table 1. Although the results are very similar for most
players, it is clear from the fifth column that only P21, P23 and P26 will obtain less utility under the Pareto
solution than a Nash one. The last column shows that the imputations obtained by the players from their
Shapley values when they cooperate all exceed their corresponding Nash values. Both of these results
provide some consensus to the proposition that adopting a cooperative approach (Pareto and Shapley)
will yield more revenues for the players than a non–cooperative approach (Nash).

4 IS COOPERATION A REALISTIC OPTION?

In the present study, the objective of each agent is to increase its own revenue, this approach means that all
farmers (or groups of farmers) are posited in a competitive framework. However, cooperation sometimes
plays a more significant role in resource management than pure competition because the vast majority of
community members share the same ideals about fairness and environmental values such as water qual-
ity, soil salinity, biodiversity etc. The current research employs the theory of cooperative games as an
alternative to this purely competitive approach. The major problem of all game theoretic models based
on cooperation is that for some players or coalition of players their individual non-cooperative behavior
leaves them better off than to cooperate. Disregarding to the fact that the collective system could loose
it makes some players tempted to cheat. The major problem of all cooperation approaches is how re-
alistic it is to avoid such cheating. Firstly, the significant feature of this research work, allowing us to
overcome this problem, is that it has been organized with close stakeholder participation during all stages
of the project implementation. This participation has two basic components. Firstly, farmers were given
the opportunities to participate in formulating of the cooperative doctrine of the game and, secondly,
they discussed adoption of the project’s results in their routine farm management work. The stakeholder
participation was implemented through the communication with different community networks in the
Hopkins River catchment (Schlapp and Schreider, 2007). These community groups unify farmers by
their professional interest or by spatial proximity of their estates. The research team communicated with
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Table 1: Comparisons between Nash, Pareto and Shapley utilities
Player Nash Pareto Shapley values Pareto - Nash Shapley value - Nash

1 163895.6 163899.2 163897.8 3.527804 2.187537
2 135741.2 135742.5 135741.7 1.329903 0.58486
3 270643 270643.1 270643.1 0.110645 0.072512
4 333118.6 333118.6 333118.6 0.079465 0.04764
5 235766.7 235766.7 235766.7 0.046963 0.021362
6 408301.2 408301.3 408301.2 0.087921 0.059747
7 77257.31 77257.42 77257.36 0.115191 0.049906
8 26.03786 26.04052 26.03875 0.002666 0.000891
9 221029 221029.2 221029.1 0.182532 0.088136
10 15701.15 15701.2 15701.17 0.045494 0.015311
11 234249.7 234249.8 234249.8 0.066908 0.035793
12 101471.5 101471.6 101471.6 0.110975 0.042742
13 44431.55 44431.62 44431.57 0.076879 0.026302
14 357260.6 357260.7 357260.7 0.074934 0.097201
15 14256.42 14256.7 14256.52 0.274629 0.09291
16 118973.8 118975.1 118974.3 1.33212 0.570237
17 738285.4 738285.4 738286 0.066084 0.609877
18 154279.4 154280.9 154280.6 1.4718 1.247507
19 59448.25 59451.32 59449.74 3.066866 1.485655
20 148713.8 148715.2 148715.1 1.420105 1.295108
21 674213.6 674211.9 674218.1 -1.70561 4.554878
22 170434.4 170436 170435.2 1.641164 0.809804
23 395551.7 395550.6 395553.2 -1.09508 1.52967
24 9723.286 9727.513 9724.648 4.226424 1.361566
25 222732.9 222737.1 222735.6 4.213054 2.780739
26 231674.7 231671.9 231679.2 -2.81854 4.4448
27 25.49782 31.75691 27.51986 6.259093 2.022039
28 443.6113 448.7244 445.262 5.113098 1.65066
29 467025.3 467027.4 467029.4 2.125083 4.10194
30 108980.6 108981.9 108981.4 1.29152 0.852762

established farmer groups in south west Victoria to obtain information on the fertilizer practices on indi-
vidual properties within the Hopkins River basin and to communicate the model implementation results
with the farmers’ community. The community groups ’Southern Farming Systems’, Glenthompson Best-
wool/Bestlamb Group, Muston’s Creek Landcare Group, Bushy Creek Group and the South Eckland
Dairy Discussion Group were approached. The role of these community groups is crucially important for
maintaining cooperation. In these groups farmers share their experience in their managerial practices and
mutually develop new strategies of developming their farms. These community groups make the farming
technologies used in practice very transparent and almost exclude opportunities for cheating the partners.
The close link of research context with these farmer’s community groups, which were the major lever
of project results delivery, is the main reason which makes cooperation a stable strategy and eliminates
the temptation to cheat. The second main reason which hindered farmers to choose a cheating strategy is
that farming is a business with relatively long time horizons. It means that the benefit from selecting a
cheating strategy in a particular year is marginally small compare to the prospect to damage the reputation
of honest player which is so important in long run. However, farmers usually built their strategies on
longterm expectations because of very high value of transition costs in agricultural business. It makes an
assumption of ’no cheating’ behavior of players from the game theoretic model constructed in the present
research, quite plausible.

5 CONCLUSIONS

This paper describes the application of cooperative game theoretic approach to the problem of effective
management of phosphorus fertilizers in order to minimize the environmental impact to waterways. This
problem was treated as tradeoff between farmers intention to maximize their crop revenue trying the same
time to keep environment healthy. The reported results indicate that the cooperative approach has a clear
advantage over the competitive strategies. The results of farmers’ survey indicated a good knowledge of
the agricultural practices which contribute to nutrient pollution. They are willing to be a part of the pro-
cess of reducing possible nutrient runoff as they can see the benefit to production, however few regarded
nutrient runoff as a current problem in their own catchment. By raising awareness of the actual status of
the region’s rivers and the potential impact of land use practices will highlight the off-site benefits. The
major message of this research sent to farmers is the amount of fertilizers, expressed in tons of phospho-
rus per hectare, which farmers should use in their property in order to have ’optimal’ outcome. In the
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non-cooperative game framework this ’optimality’ can be obtained following strategy corresponding to
the unique Nash equilibrium or to one of many ’non-dominated’ Pareto optima. The first approach cor-
responds to the competitive framework whereas the second one corresponds to some form of partnership
cooperation. As evident from the objective function values displayed in Table 1, the cooperative strategies
usually lead to better outcomes for farmers than competition. However two problems appear as evident
from Table 1: firstly, Pareto optima do not always dominate Nash optima. Secondly, the non-uniqueness
of Pareto solutions makes it difficult for players to select the most appropriate ones. This leads to some
ambiguity in strategy selections. The result of this research however, lends some support to the notion
that farmers’ cooperation via the formation of coalitions is perhaps the best action to take. It should be
clearly stated that Shapley values do not provide the alternative solution for the game but just demonstrate
the existence of total income redistribution which always dominates over the Nash equilibrium values of
objective function. This income distribution can very likely be unstable, in sense that for some players
or coalitions of players some strategy can lead to better outcomes, than that suggested by Shapley value
approach. This situation becomes more likely with increasing the number of players. In other words,
the core of the game is most likely empty in a game with a large number of players. The case of the
games with non-empty cores is considered by Gurvich and Schreider (2011) when players are situated on
the non-cyclic graphs, like for instance in the gravity delivered irrigation systems. The total payoff of a
cooperative approach, i.e. adopting the Pareto method, is greater than that using Nash equilibrium. This
should encourage farmers to establish a coalition in order to optimize their gains cooperatively. Since
using individual payoff of “non–dominated” Pareto optima doesn’t always comply with individual ratio-
nality as can be seen from the results in Table 1 (c.f. 5th column), players 21, 23 and 26 may prefer
to proceed with their individual non–cooperative objective (Nash equilibrium). However, using Shapley
values guarantees that none of the farmers would earn less utility when compared to Nash equilibrium
strategy (c.f. 6th column in the Table 1).
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