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Abstract: As part of its new responsibilities under the Commonwealth Water Act 2007, the Bureau of 
Meteorology commenced a Seasonal Streamflow Forecasting (SSF) service in December 2010. This service 
delivers probabilistic 3-monthly streamflow forecasts derived from the statistical modelling approach at 
target locations and total inflows into water storages (www.bom.gov.au/water/ssf). In parallel, the Bureau has 
developed a new modelling system for generating seasonal streamflow forecasts using the dynamic 
hydrologic modelling approach to complement forecasts derived from the statistical approach. This new 
approach uses downscaled rainfall hindcasts and forecasts from the Bureau’s seasonal climate model 
POAMA (Predictive Ocean Atmosphere Model for Australia) and lumped rainfall-runoff models to generate 
ensembles of streamflow.  

This new system called the Dynamic Modelling System (DMS) allows hydrologists to calibrate, validate, 
hindcast, and forecast catchment streamflow in ensemble mode using a workflow-based process. This 
workflow-based approach was found to greatly improve productivity during experimental evaluation because 
it allowed investigations to be declared as a workflow and then ran in an automated way. Investigations 
frequently involved a large number of combinations of catchment input data, rainfall runoff models, 
numerical optimisers, objective functions, and accumulation schemes. Additionally, the unique 
characteristics of the DMS architecture and adoption of a standardised data format allowed development, 
testing, and modelling work between three collaborating groups to proceed in parallel because data and 
model parameterisations could be shared easily between the different systems due to identical components. 
The solution design resulted in many benefits in terms of implementation and application efficiencies. 

DMS development leveraged the currently available fit-for-purpose hydrologic models and components from 
eWater CRC (Cooperative Research Centre), seasonal rainfall downscaling technologies developed by the 
Centre for Australian Weather and Climate Research (CAWCR), targeted research by the Commonwealth 
Scientific and Industrial Research Organisation (CSIRO) through the Water Information Research and 
Development Alliance (WIRADA) program and the university sector in the context of seasonal streamflow 
forecasting, particularly focused on hydrologic modelling and predictive uncertainty analysis techniques. 

A functional and technical specification document was created following a requirements elicitation and 
stakeholder engagement process. A solution plan was then designed which satisfied those requirements. 
Implementation proceeded following a guiding principle of pragmatism which resulted in a system 
leveraging a number of different software development methodologies, languages, and libraries, each 
selected for it’s strengths to satisfy the requirements of that component. This paper will discuss the specific 
technical considerations used in development of the DMS and the costs and benefits of the solution 
architecture.  

Experimental evaluation of the dynamic modelling approach using this system has demonstrated significant 
skills in the seasonal streamflow forecasting capability. Based on the results, this system will transition into 
an operational component for delivering inputs to the SSF. 
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1. INTRODUCTION  

Within the Climate and Water Division of the Australian Bureau of Meteorology and its research partners, a 
need was identified to evaluate seasonal streamflow prediction using a dynamic modelling approach. The 
dynamic approach relies on the assessment of streamflow forecasting skills using downscaled climate 
forecasts from seasonal global climate models in conjunction with hydrologic models of varying levels of 
complexity (Tuteja et al., 2009). This approach will complement the existing statistical approach used in the 
operational Seasonal Streamflow Forecasting service (SSF) (Plummer et al., 2009).  

The statistical approach is based on robust science and is implemented in a well designed and operationally 
reliable system called Wafari (Wang and Robertson, 2011 and Shin et al., 2011). A new system was required 
to generate the outputs for evaluating a dynamic modelling approach because it has different requirements to 
the current statistical approach. The resulting system has a flexible architecture and an efficient 
implementation with different characteristics to Wafari. 

In this paper we will outline the system requirements, describe the adopted solution design, outline the 
implementation of that solution, consider the key strengths and weaknesses of the chosen solution design, 
and finally discuss the method for using the system. 

2. SYSTEM REQUIREMENTS  

A project plan outlining ‘hydrologic scope’ of the experimental evaluation of the dynamic approach 
including key milestones and deliverables was developed and approved by the Bureau (Tuteja et al., 2009), 
which identified the need and high level guiding principles for development of an experimental dynamic 
modelling system. A process of stakeholder engagement and requirements elicitation was then conducted to 
capture the functional and technical requirements of the required system in a specifications document 
(Laugesen et al., 2009).  

Broadly, the system was required to provide the capability of hydrologic modelling at catchment scale in 
calibration, validation, forecast, and hindcast modes using a number of different rainfall-runoff models, 
numerical optimisers, objective functions, accumulation methods, and diagnostic statistics and plots. 
Investigation of a large number of combinations of these options was required which necessitated both a 
simple way to define the steps to be performed and an automated way to execute them. 

Five key issues were identified from the requirements which constrained the possible solutions designs: 

1. An existing framework should be utilized for all core rainfall-runoff modelling functionalities. 
2. Accommodating new functionality into the system should be possible without changing the existing 

architecture or components. 
3. The team has experience in the Python and R programming languages and this should be utilized, 

especially for the implementation of visualisation and analysis of results. 
4. The system should operate by executing workflows of tasks in an automated way which may require days 

of computer time to complete. 
5. End users of the system are hydrologists who are familiar working with simple ASCII format files for 

input data and output results analysis and are not proficient in software engineering or information 
technology. 

The Invisible Modelling Environment (TIME), developed by the eWater CRC was available and strongly 
recommended to the Bureau for use in this system (Rahman et al., 2003). This mature library has had a 
significant investment from many stakeholders in the Australian water community over the last decade and 
by leveraging it the time required for system implementation is significantly reduced and confidence in the 
generated results is enhanced.  

3. SOLUTION DESIGN 

Naturally, the primary objective of the solution design was to address the identified requirements. A 
secondary objective of the design was to separate the concerns of the various system stakeholder types as 
much as possible to remove complexity introduced through interaction between them. This secondary 
objective was considered important since the system stakeholders; managers, hydrologists, developers, and 
information technologists approached the system with different contexts, expectations, and specialist 
language styles (O’Toole and Laugesen, 2011). The resulting solution design allowed managers to exercise 
project and resource oversight, hydrologists to develop workflows and analyse results, developers to add 
components, and information technologists execute workflows and monitor the system. Each stakeholder was 
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then able to work more effectively with reduced communication overhead because the system architecture 
did not require each user to have knowledge of the tasks performed by other users.  

Because no off-the-shelf system that satisfied the identified requirements existed, a solution plan was 
designed for in-house implementation called the Dynamic Modelling System (DMS) (Laugesen, 2009). The 
DMS is based around an architecture composed of loosely-coupled components driven by declarative 
workflows (Gamma, 1995). The standard use-case of a modeller using the system is illustrated in Figure 1. 
This figure illustrates the idealised flow of information (blue arrows) and control (red arrows) through time 
(left to right) between the modeller, the DMS, and the filesystem. The specifics of the file types are addressed 
later in the paper. 

 

The components of the DMS are 
illustrated in Figure 2 and 
consist of Dynamic Modelling 
Controller (DMC), Workflow 
Manager (WFM), and a 
collection of Utility Tools (UT). 
The DMC is responsible for 
modelling and simulation of the 
rainfall-runoff process, 
accumulation of timeseries, and 
calculation of simple model 
performance statistics. The 
WFM is responsible for parsing 
sequential workflows and 
executing the resulting tasks in 
the correct sequence. Finally, the 
UT are responsible for post-
processing, analysis, and 
visualisation of the results 
generated by the DMC.  

Workflows may contain any 
number of tasks and each task 
may have any number of 
dependencies on other tasks. A 

Figure 1: Cross functional flow chart of common use-case of a modeller using the proposed Dynamic 
Modelling System 

Figure 2: Structure diagram for the Dynamic Modelling System 
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two-step approach to defining workflows was adopted: Step Declaration – a sequence of steps describing an 
abstract scenario is defined, and Process Definition – the Step Declarations are applied over a large number 
of concrete scenarios. This approach was beneficial because it made the purpose of each workflow clear and 
made it easy verify it was working as expected by simply executing the Step Declaration over a single 
concrete scenario. Additionally, either the Step Declaration or Process Definition could be reused in a new 
workflow independent of the other. The process of running an individual Step Declaration is illustrated in 
Figure 3 and is essentially an exploded view of the single “Complete Tasks” process in Figure 1. The WFM 
processes a Step Declaration file by working through all the defined tasks, each task executes a component 
which reads input data from a specific filesystem location, processes that data, and then writes output data to 
a different location. The output data of one component may potentially become the input of another. The 
Process Definition file simply repeats the Step Declaration for all required concrete scenarios (not shown in 
Figure 1).  

 

All components are executed through a single operating system call with arguments specifying the input and 
output data locations and various component specific arguments. A simple comma-separate-value (CSV) data 
file format was used for all input and output data transfer. The specific structure of this CSV format was 
carefully designed and standardised to allow components to develop independently and enable easy sharing 
of data with partners. To simplify the implementation of concurrency these files are considered immutable; 
once created they can’t be written to again. The decision to use operating system calls and simple files 
instead of a more sophisticated approach was to simultaneously address all five of the identified constraints 
on the system in the most parsimonious way. Although it was possible to identify alternative approaches that 
were more efficient in terms of computing resources when evaluating each constraint in isolation, it was not 
possible to find an approach which simultaneously satisfied them all. The overhead introduced by this 
approach was found to be negligible and will be discussed later in this paper. 

4. IMPLEMENTATION  

The DMS solution design was implemented through the following broad structural components which are 
illustrated in Figure 2: 

• The DMC was implemented using an object orientated methodology in C# to satisfy the requirement to 
leverage the TIME framework. A Model-View-Controller design pattern was used along with the Adapter 
and Bridge design patterns (Gamma et al., 1995). This is the only component which is dependent on 
Microsoft Windows; all other components are platform independent. 

 
Figure 3: Cross functional flow chart of flow of information and control between components of the 

proposed Dynamic Modelling System 
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• The UT category consists of a large number of individual applications. Most were implemented using a 
structured procedural methodology in Python and leveraged the Numpy and Matplotlib libraries 
(Oliphant, 2007). Some were created in R  

• The WFM was implemented as a finite-state machine using an object orientated methodology in Python. 
This repeats the simple rule for each task – wait a random and short amount of time, execute the task if all 
its dependencies have completed and a CPU core is available. 

The two-step workflows were implemented in the following way using simple text-editable files: 

• First, the Step Declaration is implemented using a schema defined in JSON (Java Script Object Notation), 
a lightweight text-based human-readable data format similar in scope to XML. This Step Declaration 
fully describes the sequence of steps required to complete an abstract scenario as a set of task blocks. 
Each task block first defines any dependencies it has on other tasks, then defines the system-call required 
to execute the required component, and finally defines any component specific information which is 
required. 

• Secondly, the Process Definition is implemented using a simple Python script which iterates over various 
combinations of modelling scenarios (catchment, model, optimiser, etc). As each specific scenario is 
processed an instance of the WFM is launched and passed the Step Declaration JSON file along with any 
parameters describing the specific scenario, the WFM parses the JSON file and launches each component 
as required. 

  
An example set of workflow declaration 
files are shown in Figure 4 which 
illustrates the case where a hydrologist 
wants to calibrate a rainfall-runoff model 
and generate a hydrograph for three 
catchments; in this case the data for each 
catchment is stored in a separate directory 
with the same name. This example 
demonstrates the concept of using a 
Workflow Variable to pass scenario 
specific information from the Process 
Definition to the Step Declaration; in this 
case the V1 variable is used to represent 
the catchment name. The Process 
Definition file loops through each 
catchment in the list and simply passes a 
new value for V1 (the current catchment 
name) to the WFM along with the Step 
Declaration file, the WFM then replaces 
every instance of $V1 with that value 
before executing the two tasks. The second 
task will always be executed after the first 
because of the dependency which has been 
declared. Up to fifteen separate Control 
Variables may be used which makes for a 
very flexible and general workflow 
definition process, this facilitates the 
creation of arbitrarily complex workflows 
which may be executed in a consistent and 
simple way. 

5. CONSIDERATIONS 

One benefit of the solution design was that components could be implemented using the development 
methodology, programming language, and libraries which were best suited for the purpose of the component 
and the skills of the particular developer; effectively isolating specific requirements to specific system 
components and addressing a number of the identified system constraints. Implementation on each 
component could proceed in isolation from the larger system and the developer remain confident that the 
component could be launched as required at runtime as long as it conformed to the specified system interface 

Step Declaration 

 
Process Definition 

 
Figure 4: Example set of workflow files illustrating the cases 
where a hydrologist wants to calibrate a rainfall-runoff model 

and generate a hydrograph for three catchments. 
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and standardised data file format. Automated testing of each component against its expected behaviour 
further increased developer confidence and productivity. Additionally, identifying which component was the 
cause of a problem during a large workflow run was simplified because all inputs were mutable files and 
each component wrote a log, taken together it became possible to isolate and reproduce any individual run of 
a component. 

An additional benefit of the solution design is that it turns out to be trivial to parallelise the workload across 
multiple CPU cores through the WFM due to the considerations made for concurrency such as; immutable 
data, asynchronous task scheduling, and declarative workflows. Additionally, because system-calls are used 
for control flow, all the low-level task scheduling is handled by the operating system and may be assumed to 
be operating efficiently, especially if each task is relatively long lived and the computer has sufficient RAM. 
Parallelising the workload significantly decreased the time required to complete large workflows. 

Although the solution design afforded many benefits it came at the expense of four main overheads: 

• Using operating system files for data transfer between components resulted in a large number of IO 
operations for large workflows. 

• Using system-calls for control requires a new operating system processes for each component execution. 
This was particularly problematic for UT written in Python due to the interpreter warm-up time. 

• Deployment was made more difficult because of the multiple programming languages and libraries used, 
each requiring additional dependencies to be installed before the DMS could be used. This was 
particularly aggravated due to target computers being located in a managed desktop environment and 
incompatibilities between versions of Python and its libraries. 

• Using CSV files for all data transfer and storage made interpretation of results difficult due to the large 
number of files required to inspect before an opinion could be formed. This was somewhat offset by the 
ensemble plots generated by the UT. 

The computational overheads were found to be negligible because each component completes a fairly large 
slice of the problem and in most cases the time spent within the processing phase significantly exceeded the 
time spent in file IO and process launching. This is particularly true for the DMC where the time required for 
each run is in the order of minutes. These overheads may be a limiting factor on performance in workflows 
with a large number of discrete UT tasks but the ability to easily scale across multiple CPU cores may 
mitigate the impact. The overheads associated with deployment and interpretation were addressed through 
resource and project management.  

6. APPLICATION 

Two main workflows were created and ran using the system; the historical modelling workflow and 
hindcasting workflow (Tuteja et. al, 2011). Historical modelling used observation data as forcing to calibrate 
and validate the rainfall-runoff model with a split-sample methodology. The best five calibrated parameter 
sets from historical modelling were then used in the hindcasting workflow to simulate past streamflow using 
rainfall as forcing from the hindcast dataset of the POAMA seasonal global climate model to generate 
hindcast streamflow ensembles (Alves et al., 2003). 

The Step Declarations for both workflows were complex, involving the execution of the DMC and multiple 
UT to generate timeseries, diagnostic plots, statistics, metadata, and log files. The workflow Process 
Definitions ran these Step Declarations over all combinations of a large number of catchments, rainfall-
runoff models, numerical optimisers, objective functions, accumulation schemes, and alternative 
parameterisation approaches. For eight experimental catchments the system generated approximately 60,000 
files in total for the two workflows occupying around 15GB in total, the run-time was in the order of 96 
hours on a Intel Pentium Core 2 Duo 2.8 GHz with 3GB of RAM. Generating results for so many 
combinations of simulation scenarios without a workflow-driven automated system such as the DMS would 
have been very difficult. 

7. CONCLUSION  

A phased process of requirements elicitation, solution design, implementation, and deployment was 
performed to create a software system capable of generating the outputs required to determine if a dynamic 
modelling approach to seasonal streamflow forecasting could add value to the current Seasonal Forecasting 
Service of the Australian Bureau of Meteorology.  

A solution was designed and subsequently implemented which satisfied the identified requirements and the 
key issues constraining the possible designs. The solution was based around a loosely-coupled component 
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architecture driven by a workflow based approach. Operating system-calls were used for system control and 
CSV files used for both data transfer and storage. Each component was able to leverage technologies ideally 
suited to its problem domain and undesirable requirements could consequently be confined to individual 
components rather than impacting the entire system. 

The solution design enhanced both the productivity of developers implementing the system and hydrologists 
operating it by clearly separating and addressing the concerns of each. Computational overheads introduced 
by the architecture were found to be negligible in the context of long modelling runs and easily offset by the 
benefits gained.  

Results generated by the DMS suggest that a dynamic modelling approach to seasonal streamflow forecasting 
could add significant value to the current SSF service and that the adopted solution design and 
implementation were appropriate for the identified system requirements. The DMS effectively transformed 
the limiting factor of the evaluation project from modelling and simulation to analysis and interpretation; an 
ideal outcome from the point of view of hydrologists. It will transition into an operational system following 
the identification of additional requirements and subsequent system modifications to address them.  
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