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Abstract: Bayesian Networks (BNs) are increasingly recognised as a useful tool for ecological modelling 
due to their ability to incorporate a broad range of data types and explicit representation of uncertainty 
through the use of probabilities. They allow considerable flexibility with respect to the detail and focus of the 
models allowing conceptually simple habitat condition models or more complex mechanistic representation 
of ecological response. However, BN outputs are sensitive to the model structure, particularly the selection 
and linking of variables and how the states are defined for each variable. In this paper, we use recursive 
partitioning to inform the configuration of the structure of BNs, used for ecological response modelling. 

The Narran Lakes Ecosystem is a nationally important floodplain wetland complex considered at risk. In 
2005, a mesocosm experiment was conducted as part of the Narran Lake Ecosystem Project to investigate the 
seedbanks of ephemeral plant communities in response to a range of flood scenarios. From that data and 
existing literature, a conceptual model describing the major hydrological influences on the ephemeral 
herbfields was generated. BN ecological response models were then constructed using these data. The models 
were developed using information generated from recursive partitioning (regression tree and random forests) 
and BN learning approaches (Figure 1). The models have been incorporated into an environmental flow 
Decision Support System (DSS), IBIS DSS. The BN model is linked to a hydrological model of the Narran 
Lakes allowing the modelling of ecological response to flow series.  

Recursive partitioning analyses of 
biophysical and ecological data 
informed the development of BNs in 
two ways. Firstly, random forests 
analyses were used to identify important 
predictor variables: those variables that, 
statistically, best explain the ecological 
responses. Secondly, thresholds were 
identified using decision tree analysis to 
reduce subjectivity in the discretisation 
of variables in the BNs. 

Using the coupled BNs and recursive 
partitioning method improved the rigour 
and certainties associated with state 
discretisation, and allowed us to refine 
the choice of model variables, while 
maintaining the advantages associated 
with applying BNs within the DSS.  
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Figure 1. Framework for coupling Bayesian Networks and 
recursive partitioning (BN-RP). 
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1. INTRODUCTION 

Healthy wetlands support important habitats for diverse fauna and flora. Many wetlands are increasingly 
under threat from climate change and human activities. Many rivers in Australia have provisions for 
environmental flows to supply water for maintaining river and wetland ecosystems. A decision support 
system (DSS) tool, IBIS DSS (Merritt et al., 2009), was developed for the NSW Office of Environment and 
Heritage (OEH) to assist environmental water managers on the duration, timing, and quantity of 
environmental flows. The Narran Lakes – being a nationally and internationally important wetland system 
considered at risk – was selected as one of the five key focus areas. A central part of the DSS is an ecological 
model to link hydrological regime with ecological response such as vegetation composition and biomass.  

Bayesian Networks (BNs) are increasingly recognised as a useful approach for linking hydrological and 
ecological information, where uncertainties and variability in outcomes can be expressed (Overton et al., 
2009; Arthington et al., 2010). A BN is a probabilistic graphical model that is composed of: i) a set of 
variables represented by nodes in the network; ii) a set of directed links that connect pairs of nodes; and iii) 
conditional probability tables that quantifies the relationships between the nodes. Compared to many other 
modelling approaches such as coupled models, system dynamics and agent based models, BNs have the 
advantages of incorporating different sources of knowledge, quantifying uncertainties, and promoting social 
learning (Uusitalo, 2007). However, defining a sound model structure in BNs is complicated when our 
knowledge on the causal links between the interacting variables is limited – a typical situation in wetland 
ecology. Structure learning algorithms can help explore alternate structures of the network but they generally 
rely on large datasets (Korb and Nicholson, 2010). Another critical component of BN development is the 
definition of the states of variables. Many environmental data are continuous variables and these need to be 
discretised in BNs. Finding a discretisation can be critical for the modelling outcomes; but there is no 
satisfactory automatic methods developed for BNs (Uusitalo, 2007).  

Recursive binary-partitioning is a commonly used statistical method for nonparametric regression and 
classification that has been widely applied for ecological data (De'Ath and Fabricius, 2000). It generates a 
decision tree that classifies a response variable based on predictors; in doing so thresholds can be identified 
to best separate the response variable. Decision trees can identify critical predictors for classification but 
quite often different trees can describe the same data, especially when many predictors and continuous 
variables are involved.  This can be overcome by using the random forests algorithm. This algorithm was 
developed by Breiman (2001) as an ensemble classifier. It generates many regression trees and aggregates the 
results. It is believed to provide a more accurate prediction than a single tree, and can provide more robust 
prediction compared with many other methods for problems with a large number of variables, nonlinearity 
and complex interactions (e.g. Knudby et al., 2010; Pino-Mejías et al., 2010). It can provide variable-
importance measures by modelling the increase in prediction errors. 

In this paper, we develop a coupled BNs and recursive partitioning (BN-RP) method for ecological 
modelling. Variable-importance measures from random forests and the thresholds identified from regression 
tree classification are used to assist the structuring of the BNs. In doing so, the structure of the model is 
statistically more meaningful, whilst the advantages of BNs, such as incorporating existing scientific 
knowledge and uncertainties, are maintained. A BN model was constructed for the ephemeral vegetation, 
based on the microcosm experiments conducted as part of the Narran Ecosystem Project (Thoms et al., 
2007). The experimental information is used to detect changes in ephemeral vegetation in the Lakes system, 
using biomass and community types given different inundation regimes. 

2. THE NARRAN LAKES 

The Narran Lakes Ecosystem (Figure 2) is located within the Condamine Balonne catchment, and is part of 
the Lower Balonne floodplain region.  It is a floodplain wetland complex which consists of four relatively 
distinct topographical components: Clear Lake, Back Lake and Long Arm in the north, comprising the 
‘Northern Lakes’; Narran Lake in the south; a large flood-plain area throughout; and a complex network of 
river channels that dissect the floodplain (Adams and Tyson, 2004).  The lakes have a combined surface area 
of 131.1 km2, and the channel networks have a combined length of 804.5 km (Thoms et al., 2002). The 
Narran Lakes Nature Reserve encompasses the area surrounding Back and Clear Lakes, and is listed under 
the Ramsar Convention. The lakes are important refugia for waterbirds and the success of waterbird breeding 
in the Narran Lakes region is highly dependent on water inundation of the floodplain and the lakes (Thoms et 
al., 2007). Any decline in flow volumes is likely to have a negative effect on waterbirds. 

2452



Fu et al., Coupled Bayesian Networks and recursive partitioning method for wetland ecological modelling  

The climate of the Narran Ecosystem is semi-arid with 
an average annual rainfall of 358–425 mm (McGann et 
al., 2001). The hydrology of the lakes is dominated by 
flows from the Narran River, local rainfall and 
evaporation (Thoms et al., 2002). Flooding in the region 
will generally occur between January and February, and 
May to June, whilst low flow periods usually occur 
from September to October (Thoms et al., 2002). Due to 
recent water resource development, hydrological 
connections between river channels and associated 
floodplains have been significantly reduced (Thoms et 
al., 2002).  

3. METHODS 

3.1. Data collection 

As detailed in Thoms et al. (2008) a mesocosm experiment was conducted during 2005 as part of the Narran 
Lakes Ecosystem Project to investigate the response of ephemeral plant communities emerging from soil 
seed banks to a range of flood scenarios. The objectives of this experiment were to determine the role of 
flood pulse characteristics (i.e. duration, timing, frequency and rate of drawdown) on the productivity and 
diversity of ephemeral plant communities, as well as the relative influence of long-term flood history in terms 
of the initial floristic composition of soil seed banks. 

Soils were collected from 24 sites across the study area and stratified across the northern and southern 
regions (12 in each) as well as 4 broad flood frequency classes within each of these regions. Three replicate 
sites were sampled in each of the ‘region – flood frequency’ class combination.  Soil from each site was 
divided between 13 pots and each pot then subjected to one of the following annual flood scenarios chosen to 
represent sensible combinations of varying flood duration, timing, rate of drawdown and frequency (within 
the constraints posed by limited time and space): 

1. 6SF: 6 month summer flood with fast drawdown 
2. 6SS: 6 month summer flood with slow drawdown 
3. 3SF: 3 month summer flood with fast drawdown 
4. 3SS: 3 month winter flood with slow drawdown 
5. 6W: 6 month winter flood 
6. 3WF: 3 month winter flood with fast drawdown 
7. 3WS: 3 month winter flood with slow drawdown 
8. 12: 12 month flood 
9. 3S3W: 3 month summer flood with fast drawdown and 3 month winter flood with fast drawdown 
10. 6 months submerged 
11. 3 month summer flood with fast drawdown 
12. 3 month summer flood with slow drawdown 
13. rainfall only (mimicked based on daily rainfall data from Walgett during 2005). 
Pots subjected to treatments 1 to 9 were harvested after 12 months while pots under treatments 10 to 13 were 
harvested after 6 months. During harvest, all plants were removed from pots, counted, identified and 
reproductive status was noted. Total biomass, above-ground and below-ground biomass were then measured 
as dry weights for each species. 

3.2. Prior knowledge and conceptual model of hydrological influences on ephemeral herbfields 

The conceptual model describes the major hydrological influences on the ephemeral herbfields in the Narran 
Lakes Ecosystem (Figure 3), where the composition and structure of wetland and floodplain herb 
communities generally reflect recent flood pulse attributes rather than longer-term flood history. Flood pulse 
attributes, i.e. timing, depth, duration and rate of drawdown, have a direct influence on processes, particularly 
the development of aquatic plant communities. Vegetation that responds to drawdown will be indirectly 
influenced via flood stress and soil moisture levels as drying progresses. Flood timing can directly affect 
plant community composition in this phase since some species have temperature related germination cues. 

 

Figure 2. Map of the Narran Lakes Ecosystem, 
Australia (eWaterCRC, 2007) 
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Flood history will influence the composition and structure of ephemeral herbfields by shaping the abundance, 
composition and viability of propagule banks (Capon and Brock, 2006; James et al., 2007). Position in the 
landscape is included in the conceptual model since survey data suggests that communities in areas adjacent 
to terrestrial systems will comprise a greater proportion of upland species, e.g. chenopod shrubs. This is 
likely to be especially important for dry phase vegetation. 

 

Figure 3. Conceptual model of hydrological influences on ephemeral herbfield communities in the Narran 
Lakes Ecosystem 

3.3. Development of the coupled BN-RP framework 

The coupled BN-RP framework (Figure 1) uses recursive partitioning (including regression tree and random 
forests) to help in defining a BN structure, particularly where there are a large number of interacting and/or 
continuous variables to consider representing in the network. Variable-importance measures are an output 
from the random forests analysis, and this assists in identifying the statistically important predictors, whilst 
the regression trees help quantify thresholds which are statistically meaningful when discretising continuous 
variables. These types of outcomes from the recursive partitioning analysis are incorporated with existing 
ecological knowledge to define the BN structure. Conditional probability tables which describe the strength 
and nature of the relationship between variables are then quantified through BNs data learning algorithm.  

Two packages are available in R to perform regression tree analysis: rpart (Therneau et al., 2011) and party 
(Hothorn et al., 2011). Using the datasets described in Section 3.1, the response variables considered include 
total biomass (TBM), percent total biomass below ground (TBM_BG) and above ground (TBM_AG). As a 
percent of the total biomass, the model also includes annual forbs (AF), annual monocots (AM), perennial 
forbs (PF), perennial monocots (PM) non-vascular (NV), total forbs (F) and total monocots (M). The 
predictors are listed in Table 1. These predictors vary in the scales of measurement and numbers of 
categories. Some predictor variables being considered in the analyses are correlated. To deal with this 
situation, the ctree() and cforest() functions in the party package can offer statistically unbiased variable 
selections, representing unbiased tree and variable-importance measures (Hothorn and Zeileis, 2009). 
Therefore, cforest() was used to perform random forests analysis to quantify variable importance. This was 
followed by using ctree() to identify predictor thresholds.  

The outcomes of recursive partitioning analysis were used to assist the development of BNs in two ways. 
Firstly, the important predictors identified through the random forests analysis are those that best explain the 
response variables statistically. Secondly, the thresholds identified through decision tree analysis provide a 
guide for discretisation in the BNs. Recursive partitioning can be a useful tool to analyse scientific data, the 
results of regression tree and random forests analyses (and any results from data mining) must be interpreted 
in conjunction with scientific knowledge in order to reach a sensible outcome. In light of the objective of the 
IBIS DSS project, i.e. to assist environmental flow management, the predictors were selected using the 
following criteria: 

• some or all of the predictors are related to flood regime; 
• the predictors are consistent with ecological knowledge; 
• the predictors have relatively high variable-importance values. 
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Table 1. Predictor variables used for recursive partitioning analysis. 

Variable name Description States 
Elevation Elevation Numeric, ranges from 118.1 to 122.6 m. 
Final.Class Flood frequency: the classification of sites is 

by region and broad flood frequency (based on 
the number of years inundated by largest 
annual event between 1988 and 2004) 

Categorical, include NF (north region frequently flooded), NI 
(north region infrequently flooded), SF (south region frequently 
flooded) and SI (south region infrequently flooded). Frequently 
flooded sites were inundated in more than 12 out of 16 years. 

Duration Flood duration during treatment Numeric, ranges from 3 to 12 months. 
Ddown Water drawdown rate during treatment Categorical, includes F (fast), S (slow) and N (no drawdown). 
Timing Flood timing during treatment Categorical, includes S (spring), W (winter), and SW (spring and 

winter).  
Frequency Flood frequency during treatment Numeric, includes 1 (once) and 2 (twice). 
RI Annual recurrence interval Numeric, ranges from 1.259 to 17. 
Sand  Percentage of sand Numeric, ranges from 3.82 to 26.39 %. 
Clay Percentage of clay Numeric, ranges from 11.54 to 34.32 %. 
pH pH Numeric, ranges from 7 to 9.5. 
Org Organic matter  Numeric, ranges from 3.11 to 19.61. 
Ca Calcium concentration Numeric, ranges from 0.54 to 2.3 mg/kg. 
K Potassium concentration Numeric, ranges from 1 to 1.85 mg/kg. 
Mg Magnesium concentration Numeric, ranges from 0.64 to 1.14 mg/kg. 
Mn Manganese concentration Numeric, ranges from 249 to 560 mg/kg. 
Na Sodium concentration Numeric, ranges from 0.12 to 0.3 mg/kg. 
P Phosphorus concentration Numeric, ranges from 430 to 850 mg/kg. 
N Nitrogen concentration Numeric, ranges from 560 to 4640 mg/kg. 

 
The BN software program Netica (www.norsys.com) was used to generate probabilities.  

4. RESULTS 

The variable-importance measures from random 
forests analysis are illustrated in a heat map (Figure 
4); the brighter the colour, the higher the variable-
importance measures. Note that the colour is scaled 
for the same response variable (i.e. each row). The 
relative importance of predictor variables varies 
depending on the response variables. For example, 
flood timing (Timing) is found to be the most 
important variable in classifying the proportion of 
above ground or below ground biomass (%TBM_AG 
and %TBM_BG). However, for the classification of 
non-vascular biomass proportion (%TBM_NV), 
flood duration (Duration) and water drawdown rate 
(Ddown) become more important.  In general, 
variables that are related to flooding regime such as 
flood timing, final class (a combination of location 
and flood frequency), and water drawdown rate were 
found to have higher variable-importance measures 
than those related to soil properties such as soil 
texture and chemistry. An exception is phosphorus 
concentration which is found to be an important 
predictor for ephemeral biomass.  

Although random forests provide variable-
importance measures allowing the elemination of  
insignificant predictors, this analysis does not identify specific thresholds. To do this, we used decision tree 
analysis with selected variables that has been identifed important in the random forests anlaysis. The 
regression tree analysis for the proportion of total forbs in total biomass is shown in Figure 5. North region 
frequently flooded (Final.Class=NF) samples have a higher proportion of total forbs compared to other 
regions (median total forbs proportion = 13%). In the NF region, samples that were treated with winter flood 
have much lower total forbs (median total forbs proportion = 11%) than those flooded in spring (Timing=S) 

 

Figure 4. Variable-importance measures for 
response variables related to ephemeral biomass. 
(TBM: Total biomass; AG: above-ground; BG: 
below ground; AF/PF: annual/perennial forbs; 

AM/PM: annual/perennial monocots; NV: non-
vascular). 
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or spring and winter (Timing=SW). A flood duration of 3 months was identified as the critical threshold to 
separate the proportion of forbs in total biomass: those flooded less than 3 months (Duration ≤ 3) have a 
median of 92% total forbs while those flooded more than 3 months (Duration > 3) have a median of 56%. 
The distributions of the response variables in each class (i.e. the box plots in Figure 5) provide valuable 
information on how to best discretise response variables to maximise model sensitivity. For the example 
provided in Figure 5 reasonable thresholds to discretise the proportion of total forbs are: below 20%, 20-50%, 
50-90% and above 90%.  

The BN model for ephemeral vegetation (Figure 6) 
was constructed with consideration of the purpose 
of the model (to assist environmental flow 
management), existing scientific knowledge on how 
ephemeral vegetation should response to 
environmental variables, the statistically important 
variables, and the thresholds which could best 
separate the response variables. The input nodes of 
the BN model were selected, and the states of the 
nodes were discretised with the consideration from 
the outcomes of recursive partitioning to maximise 
model sensitivity. This model is implemented the 
IBIS DSS which links hydraulic behaviour in the 
Narran Lakes to ecological responses. The IBIS 
DSS has been designed to explore the likely 
outcomes of climate and water planning scenarios 
on ecological characteristics of the Narran Lakes 
and thus support the OEH plan and manage flows at 
wetland and valley scales over short term (annual) to long term (decadal) planning scales. Although this 
model was structured to use the best of the existing data, it is still limited by the uncertainty associated with 
data itself, which is derived from laboratory experiments for samples from a limited number of sites in a 
highly variable ecosystem. Validation using field data must be undertaken to test the model before it can be 
used to assist environmental flow management. 

 

Figure 6. Bayesian network for inundation and vegetation (ephemeral / herbs) variables  

5. CONCLUSION 

The coupled Bayesian Networks and recursive partitioning method presented here provides a framework to 
help better structure BNs through the integration of prior knowledge and classification exercise. The model 
represents an appropriate selection of variables and states discretisation whilst maintaining the strengths of 
BNs, namely: explicit representation of uncertainty, the capacity to use a broad range of data to populate the 
network, and representation of ecological processes at a level appropriate to the amount of available data. 
This method is especially helpful in reducing the complexity of the BNs by eliminating non-critical variables, 
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Figure 5. Regression tree for the proportion of 
forbs in total biomass.  
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and in increasing sensitivity of the model. The model represents a synergy of learning from the recursive 
partitioning analysis and prior knowledge on ecological response to flooding.  
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