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Abstract: Water resource management and planning increasingly need to incorporate the effects of global 
climate change on regional climate variability in order to accurately assess future water supplies. Therefore 
future climate projections, particularly of rainfall, are of utmost interest to water resource management and 
water-users. General circulation models (GCMs) are the primary tool used to simulate present climate and 
project future climate. The outputs of GCMs are useful in understanding how future global climate responds 
to prescribed greenhouse gases emission scenarios. However GCMs do not provide realistic daily rainfall at 
scales below about 200 km, at which hydrological processes are typically assessed. Statistical downscaling 
techniques have been developed to resolve the scale discrepancy between GCM climate change scenarios and 
the resolution required for hydrological impact assessment, based on the assumption that large-scale 
atmospheric conditions have a strong influence on local-scale weather. Gridded rainfall is important for a 
variety of scientific and engineering applications, including climate change detection, the evaluation of 
climate models, the parameterization of stochastic weather generators, as well as assessment of climate 
change impacts on regional hydrological regimes and water availability, whereas statistical downscaling has 
predominantly provided daily rainfall series at the site (point) scale.  

This study explores the application of statistical downscaling to gridded and catchment rainfall datasets using 
three methods: 1) statistically downscaling to sites and then post-processing to interpolate to gridded rainfall; 
2) treating each grid cell as an “observed” site for statistical downscaling directly; and 3) treating each sub-
catchment as an “observed” site and statistically downscaling to sub-catchment averaged rainfall. The 
statistical downscaling Nonhomogeneous Hidden Markov Model (NHMM), which models multi-site patterns 
of daily rainfall as a finite number of ‘hidden’ (i.e. unobserved) weather states, is used for a study region 
comprising several catchments of the southern Murray-Darling Basin (MDB) in south-eastern Australia, 
which until this year has been experiencing a decade long drought. 

The results show that: 1) the best performance, of the methods compared, resulted from calibration to 
meteorological station data. The NHMM calibrated to 38 stations across the lower MDB reasonably 
reproduced the validation period mean rainfall characteristics; 2) Calibration to catchment average rainfall, 
for a corresponding set of 38 sub-catchments, produced a reasonable calibration result but significantly more 
bias for the validation period in comparison with the station NHMM results. Whether the threshold used to 
define wet-days influences this aspect of performance will be investigated in future work; 3) Calibration to 
all 364 grid cells across the study area catchments produced a biased result for both calibration and validation 
periods. Given this, subsequent calibration to grid cells for 12 smaller sub-catchments produced mixed results 
given numerical instabilities in the NHMM optimization algorithms; and 4) It is difficult to determine the 
relative contribution to validation-period bias that could be the result of several factors, such as inadequate 
parameterizations of the NHMMs, non-stationary in the relationship between NNR predictors and rainfall 
data, or data quality limitations. Most probably all are involved to some extent, and so future work should 
also investigate validation issues. 
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1. INTRODUCTION 

Water resource management and planning increasingly need to incorporate the effects of global climate 
change and variability in order to accurately predict future supplies (Fu et al. 2007).  Therefore future 
climate, particularly rainfall, is of utmost interest to resource management, agriculture, and water-users. 
General circulation models (GCMs), mathematical models of the general circulation of the planetary 
atmosphere and ocean are the primary, if not only, tool to simulate present climate and project future climate 
(Christensen et al., 2007). The outputs of GCMs can be useful in understanding future global climatic 
changes given a greenhouse gases emission scenario. However, they currently do not provide reliable 
information on scales below about 200 km (Meehl et al., 2007), on which hydrological processes typically 
occur (Kundzewicz et al., 2007). Therefore, higher-resolution scenarios are required for the most relevant 
meteorological variables to investigate the impacts of climate change on hydrological process and water 
availability. 

Downscaling techniques have been developed to resolve the scale discrepancy between GCM climate change 
scenarios and the resolution required for impact assessment. Statistical downscaling, relating large-scale 
GCM fields to daily precipitation at observed meteorological sites, is widely used for this kind application 
(Maraun et al., 2010). However, gridded rainfall is also important for a variety of scientific and engineering 
applications, including climate change detection, the evaluation of climate models, the parameterization of 
stochastic weather generators, as well as assessment of climate changes on regional hydrological regimes and 
water availability (Hofstra et al., 2008) whereas statistical downscaling has predominantly been applied at the 
site (point) scale. The objective of this study is to provide a preliminary exploration of the potential for 
statistical downscaling to gridded rainfall datasets using the Nonhomogeneous Hidden Markov Model 
(NHMM) downscaling technique as described in section 2.3. 

2. MATERIALS AND METHODS  

2.1 Study Region  

The study region comprises several catchments of the southern Murray-Darling Basin (MDB) in south-
eastern Australia (Fig 1), i.e., Loddon, Avoca, Campaspe, and Goulburn rivers. This region is of interest 
because: 1) The southern MBD produces the majority of MDB streamflow and the streamflow elasticity in 
the last decade is larger than the long-term average, indicating that the system is undergoing a change in its 
hydrological response to climate. For example, the long-term rainfall elasticity of runoff for the southern 
MDB is 2.16, which implies that 
a rainfall reduction of 10% 
would, on average, translate into 
a runoff reduction of 21.6% 
(Chiew et al 2006). However, 
the 1997–2006 drought period 
has an elasticity about 50% 
greater than the long-term 
average (Potter et al., 2010). 2) 
The NHMM has previously been 
applied to this region (Frost et 
al. 2011; Fu and Charles, 2011) 
where it was assessed as 
performing well compared to 
two other stochastic 
downscaling methods 
(GLIMCLIM and MMM-KDE, 
see Frost et al. 2011 for further 
details)..  

2.2 Datasets  

Three types of daily data are 
used in this study: (a) historical 
rainfall data at meteorological stations; (b) historical rainfall data interpolated to grid cells; and (c) large 
spatial-scale reanalysis atmospheric predictors which are used with (a) and (b) for calibration and verification 
of the statistical downscaling model for sites and grid cells, respectively. 

Figure 1 Study Region and climate stations. 
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The 38 daily rainfall stations chosen for this study are located in the southern MDB in south-eastern 
Australia. They come from the Patched point dataset (PPD), which uses original Bureau of Meteorology 
(BoM) measurements for the individual meteorological stations, with interpolated data used to fill (patch) 
any gaps in the observation record. The stations used in the study were selected based on having: a) 
continuous observations from 1961 to 2000 with less than 5% missing data within each decade; and b) 
minimal untagged accumulations (as identified through the method of Viney and Bates, 2004).  The 
elevations of the sites range from 30 to 600 meters above sea level, with annual mean rainfall (1961-2000) 
from 360 to 1400mm (Figure 1). Of the 38 stations, 37 have less than 1% of missing data for the 40 year 
study period, with the only exception being Station 80019, which has 1.42% missing data. 

The SILO Data Drill data provides surfaces of daily rainfall, as well as other climate variables, interpolated 
to 0.05° grids across Australia from point measurements made by the Australian Bureau of Meteorology 
through the method of Jeffrey et al. (2001), i.e., the interpolations are calculated using splining and kriging 
techniques. The data in the Data Drill are all interpolated with no original meteorological station data 
remaining. This gives the Data Drill the advantage of being available for any set of 0.05° coordinates in 
Australia (Jeffrey et al., 2001).  There are 364 grid cell rainfall series used in this study in 12 sub-catchments. 
The number of grids cells within each sub-catchment varies from 11 to 65 depending on sub-catchment size 
s. The sizes (and colours) in Figure 2 represent the magnitudes of annual rainfall for these cells.   

The atmospheric predictors for the observed period were extracted as daily values from the NCEP/NCAR 
Reanalysis (NNR) data archive on a 2.5° x 2.5° grid for 6 x 5 NNR grid cells over the study region (Frost et 
al. 2011).  

2.3 NHMM  

The NHMM was 
selected to downscale 
atmospheric 
predictors to multi-
site daily rainfall. 
Previously the 
NHMM has been 
found suitable when 
applied to southwest 
Western Australia for 
historical (Hughes et 
al., 1999; Charles et 
al., 1999, 2004) and 
climate change studies 
(Bates et al., 1998). 

The NHMM models 
multi-site patterns of 
daily rainfall as a 
finite number of “hidden” (i.e. unobserved) weather states. The temporal evolution of these daily states is 
modelled as a first-order Markov process with state-to-state transition probabilities conditioned on a small 
number of synoptic-scale atmospheric predictors, such as sea-level pressure, geopotential heights, and 
measures of atmospheric moisture. Precipitation at a network of stations is modelled using tree-averaged 
multivariate copulas as outlined in Kirshner (2007). Detailed information on this version of the NHMM, 
including its mathematical parameterisations, estimation algorithms and assumptions can be found in 
Kirshner (2005) with a corresponding software toolkit available at: 
http://www.stat.purdue.edu/~skirshne/MVNHMM/. 

The NHMM was calibrated using the period 1981-2000. This period was chosen due to its higher level of 
data quality control compared with earlier periods. Data spanning the period 1961-1980, of potentially lower 
quality, were reserved for cross-verification purposes. The NHMM was applied to the 4-month winter 
season, i.e. July–October. The model uses four weather states and four predictors: MSLP (mean sea level 
pressure), V700 (North-South wind at 700 hPa), Shum850 (specific humidity at 850 hPa), and DTD500 (dew 
point temperature depression at 500 hPa, i.e. the difference between air and dew point temperature). Prior to 
their use in NHMM calibration, the atmospheric predictors extracted from NNR were normalised. 

 

Figure 2 SILO 0.05o grid rainfall (364) and 12/38 sub-catchments used in this 
study. 
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3. RESULTS AND DISCUSSION  

3.1. NHMM calibration results 

The NHMM model calibration results for 1981-2000 for the three data types are shown in Figure 3. The 
statistical downscaling of daily rainfall for the 38 stations gives the best correspondence between observed 
and simulated seasonal rainfall (Figure 3a). The method b) which treats each grid cell as an “observed” site 
consistently underestimates the seasonal rainfall (Figure 3b). The method c), i.e., to treat each sub-catchment 
as an “observed” site and calibrate to sub-catchment averaged rainfall, produce an acceptable result with 
slightly over-estimation (Figure 3c). Whether this result can be improved by increasing the wet-day threshold 
(currently >= 1 mm is used for all three data types) is the subject of further investigation. In all cases a more 
optimum combination of predictors could also potentially improve performance. The four predictors used 
were determined by ‘manually building’ models of greater complexity, i.e. starting with one predictor, then 
two, and so on.  With greater computing power now available, future work will investigate all possible 
combinations of a larger set of candidate predictors.  

3.2. NHMM validation results   

The corresponding NHMM validation results for 1961-1980 for the three data types are shown in Figure 4. 
Generally there is less agreement between observed and simulated seasonal rainfall in comparison with the 
calibration period. Overall, the statistical downscaling of daily rainfall for the 38 stations still gives the best 
results (Figure 4a). The method b)  consistently underestimates the seasonal rainfall, as was the case for the 
calibration period. Validation results for sub-catchment averaged rainfall produce a worse result with 
significant over-estimation (Figure 4c). Such biases could be a result of inadequate parameterizations of the 
NHMMs, non-stationarity in the relationship between NNR predictors and rainfall data, or data quality 
limitations, or some combination of all of these factors. Given that we do not know the extent to which the 
data quality of the station data used to construct the catchment rainfall and the reanalysis data used to drive 

Figure 3 Comparison of observed and simulated seasonal rainfall for a) 38 stations, b) 364 grid cells, and c) 
38 sub-catchments series for 1981-2000 

Figure 4 Comparison of observed and simulated seasonal rainfall for a) 38 stations, b) 364 grid cells, and c) 
38 sub-catchments series for 1961-1980
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the NHMM is potentially worse in this earlier period, such a hypothesis is hard to test. 

3.3 Grid downscaling at sub-catchment scale   

To investigate whether the performance for gridded networks could be improved, 12 smaller-size sub-
catchments were selected for NHMM calibration (Figure 2). This investigated limitations in fitting the 
NHMM to highly correlated rainfall series. Rather than only fit 4 state models, as above, instabilities in 
model convergence required investigating 2, 3 and 4 state models for each sub-catchment. Table 1 indicates 
which model runs completed: 1) the NHMM only converged for 12 out of the 36 model runs attempted; we 
hypothesis that the highly spatial-correlated rainfall cells produce numerical instabilities in the NHMM 
algorithm; 2) within the 12 successful run scenarios, most of them could not produce an acceptable seasonal 
rainfall except in 3 or 4 cases (Figure 5) – catchment 405217 with 2 states, catchment 405269 with 2 states, 
catchment 405240 with 3 states, and (maybe) catchment 405240 with 4 states. This reflects the instability and 
suggests the unsuitability of the NHMM to downscale daily rainfall for the grid cells at a catchment scale.  

 

4. CONCLUSIONS  

This preliminary investigation has compared the suitability of the NHMM statistical downscaling model 
when calibrated to several daily rainfall data types, namely 1) meteorological station, 2) gridded and 3) 
catchment average daily rainfall data. Conclusions drawn from this assessment include: 

• The best performance, of the methods compared, resulted from calibration to meteorological station data. 
The NHMM calibrated to 38 stations across the lower MDB reasonably reproduced the validation period 
mean rainfall characteristics.  

• Calibration to catchment average rainfall, for a corresponding set of 38 sub-catchments, produced a 
reasonable calibration result but significantly more bias for the validation period in comparison with the 
station NHMM results. Whether the threshold used to define wet-days influences this aspect of 
performance will be investigated in future work.  

• Calibration to all 364 grid cells across the study area catchments produced a biased result for both 
calibration and validation periods. Given this, subsequent analysis for 12 smaller sub-catchments 
produced mixed results given numerical instabilities in the NHMM optimization algorithms. 

• It is difficult to determine the relative contribution to validation-period bias that could be the result of 
several factors, such as inadequate parameterizations of the NHMMs, non-stationary in the relationship 
between NNR predictors and rainfall data, or data quality limitations. Most probably all are involved to 
some extent, and so future work should also investigate validation issues.  
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Table 1.  NHMM calibration success rates for 12 sub-catchments 

Catchments Number of Grids 2 States 3 States 4 States 

405217 14 Y Y N 
405226 32 N N N 

405228 20 N N N 

405240 26 N Y Y 

405269 49 Y N N 

406213 25 N N N 

406224 11 N N N 

407211 27 N N Y 

407215 41 N N N 

407222 27 N Y Y 

407236 65 Y N N 

408206 27 Y Y Y 
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