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Abstract: Since the latter half of the 20th century, many regions of Australia experienced a drop in 
average rainfall, causing low inflows to reservoirs. Until the recent heavy rainfalls of late 2010 and early 
2011, Victoria suffered a severe drought commencing 1997. This resulted in a reduction of annual average 
inflows to Melbourne's main water supply reservoirs of about 38%, during the period 1997-2008. The 
Grampians Wimmera Mallee Water (GWMWater) supply system in north-western Victoria also experienced 
a drop in annual inflows to its reservoirs of about 75%, from the long term average since 1997. Already being 
the driest inhabited continent in the world, this drop in inflows to reservoirs was of significant concern to 
water managers across much of Australia. Such a significant deviation from the long term average highlights 
the importance of being able to reliably predict streamflows considering the likely future climate change and 
variability, which will ultimately aid in future planning of the water supply systems.  

General Circulation Models (GCMs) are the most advanced tools available for the simulation of future 
climate. However, the coarse spatial resolution of GCMs does not allow for hydroclimatic predictions at the 
catchment scale. Indeed, they are incapable of producing outputs at the fine spatial resolution needed for 
most hydrological studies. To address this issue, downscaling methods have been developed, which link 
coarse resolution GCM outputs to surface hydroclimatic variables at finer resolutions. Downscaling 
techniques are broadly classified as either dynamic or statistical. The computation cost associated with 
dynamic downscaling methods is much higher than that of statistical downscaling. Another major drawback 
of dynamic downscaling models is their high complexity. The aim of the present study was to develop a 
model capable of statistically downscaling monthly GCM outputs to catchment scale monthly streamflows, 
accounting for the climate change. The current study investigated only the calibration and validation of the 
abovementioned statistical downscaling model. This was demonstrated through a case study applied to the 
GWMWater supply system in north-western Victoria, Australia. It is a large scale complex multi-reservoir 
system that is operated to meet a range of economic, social, and environmental interests. 

Support Vector Machine (SVM), a statistical downscaling technique, was used in the current streamflow 
downscaling exercise. The selection of SVM for downscaling was based on its better capability in capturing 
complex non-linear relationships between GCM outputs and catchment level variables, than artificial neural 
networks (ANN) and multi-linear regression (MLR), as observed in the past studies. National Center for 
Environmental Predictions/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data and 
observed streamflow data, over the study area, were used for the calibration and verification of the 
downscaling models. The model calibration (1950-1989) and validation (1990-2010) were performed on each 
calendar month separately and later results were aggregated to produce the time series of prediction. It was 
found that, the model was able to produce better predictions over the summer and winter months than in 
autumn and spring. The model tended to over predict the peaks of streamflows particularly after the 1997 
drought in Victoria. It was further observed that the NCEP/NCAR reanalysis variables used in the study did 
not show a clear change corresponding to the drop in streamflow observed after 1997. The problems 
associated with the method over the recent severe drought have revealed important information to enable 
improvements for future model work. Downscaling streamflows from the GCMs skips complex hydrologic 
modelling, saves time and effort in predicting streamflows.  Also, the current work in downscaling 
streamflows from GCM outputs is believed to be the first in Australia. The present research employed 
downscaling models based on the 12 calendar months enabling a better capture of streamflow characteristics, 
unlike the models based on seasons used in the past studies. 

Keywords: General circulation models (GCMs), statistical downscaling, support vector machine (SVM), 
streamflow 
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1. INTRODUCTION 

Climate change caused by the rise in atmospheric Greenhouse Gases (GHG) is a well accepted phenomenon 
although not without acknowledged uncertainty as to its consequences (Kiem and Verdon-Kidd, 2011). The 
climate change could affect river flows, water quality and ecology of freshwater bodies. A dependable 
streamflow forecast will aid in the regulation of runoff and allocation of water for multitude of needs such as 
domestic water supply, industrial needs plus irrigation and environmental flows. The availability of water in 
rivers and reservoirs is crucial as this water fulfils many needs of humans as well as flora and fauna. The 
rising demand for water and the possible decline in future water resources due to the climate change, will 
pose a significant challenge to water resources authorities (Chiew et al., 2010). The average precipitation 
over southern half of southeast Australia, during the 1997–2008 period declined by 11% from the long term 
average, meanwhile the corresponding runoff drop for the region was 35 % (Chiew et al., 2010). The 
Australian State of Victoria experienced a severe drought commencing in 1997 and ending only from the 
recent heavy rainfalls of late 2010 and early 2011. During 1997–2008, the Melbourne water supply system 
and the Grampians Wimmera Mallee water (GWMWater) supply system in Victoria faced inflow drops of 
38 % and 75 % from the long term inflow average to their reservoirs respectively. In these circumstances the 
prediction of streamflows into future under changing and varying climate is of great importance.  

The General Circulation Models (GCMs) are the most advanced tools that are available for the simulation of 
future climate (Anandhi et al., 2008). These models are capable of predicting climate, hundreds of years into 
future considering the GHG concentrations in the atmosphere. Ghosh and Mujumdar (2008) regarded GCMs 
as the most credible tools designed to simulate time series of climate variables, considering the 
concentrations of GHGs. Although GCMs are among the most advanced tools for predicting the future 
climate, they are incapable of producing outputs at a finer spatial resolution, needed for most hydrologic 
studies. The spatial resolution of a present day GCM is coarse, which is in the order of a few hundred 
kilometers (Tripathi et al., 2006). The coarse resolution does not allow the direct use of GCM predictions at 
the catchment scale. However, downscaling methods have been developed to link coarse resolution GCM 
outputs to surface climatic variables at finer resolutions, as a solution to the above issue (Chen et al., 2010). 
According to Tisseuil et al. (2010), downscaling bridges the large scale atmospheric conditions with local 
scale climatic data. Downscaling techniques are broadly classified into two categories as dynamic 
downscaling and statistical downscaling. In dynamic downscaling a Regional Climatic Model (RCM) is 
nested in a GCM. The RCM is an atmospheric physics based model to which boundary conditions are 
provided with the output of a GCM. The major drawback of dynamic downscaling is its complexity and high 
computation cost (Anandhi et al., 2008). The other problem with dynamic downscaling is the propagation of 
systematic bias from GCM to RCM (Giorgi et al., 2001).  Statistical downscaling methods construct 
statistical relationships between the large scale GCM outputs (predictors) and the catchment scale climate 
variables (predictands) (Chen et al., 2010). The basic advantage of statistical downscaling is that it is 
computationally less demanding compared to dynamic downscaling. 

According to Wilby and Wigly (2000), statistical downscaling is based on few assumptions. These 
assumptions are that the predictor-predictand relationships are valid under future climatic conditions, and 
predictor variables and their changes are well characterised by GCMs. In general, statistical downscaling 
techniques are classified into three main categories as weather classification, regression models and weather 
generators. Weather classification methods classify large scale atmospheric variables of GCMs into finite 
number of states and relate them to basin scale climate variables. Regression methods build up linear or non-
linear functions between predictors and predictands (Chen et al., 2010). Weather generators produce a 
synthetic series of climate data, while preserving statistical attributes of the observations of climate variables 
(Wilks and Wilby, 1999).  
Statistical downscaling of GCM outputs to catchment scale climatic variables has gained wide application in 
hydro-climatology. In literature, there are number of studies performed on downscaling GCM outputs to 
catchment level climatic variables such as precipitation and temperature. Tripathi et al. (2006) used Support 
Vector Machine (SVM) and Artificial Neural Networks (ANN) for forecasting monthly precipitation. 
Chen et al. (2010) utilized SVM and Multiple Linear Regression (MLR) to predict daily rainfall. 
Anandhi et al. (2009) downscaled monthly maximum/minimum temperatures with the SVM technique. 
Huth (2002) downscaled daily mean temperature using MLR. Generalized Additive Models (GAM) were 
applied to predict 6 hour mean wind speeds by Salameh et al. (2009). In downscaling literature, only a few 
studies have been done on downscaling GCM predictors directly to streamflow. Tisseuil et al. (2010) used 
GAM, Generalized Linear Models (GLM), Aggregated Boosted Trees (ABT) and ANN for predicting daily 
streamflows. Ghosh and Mujumdar (2008) applied SVM and Relevance Vector Machine (RVM) to predict 
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monthly streamflows. Cannon and Whitfield (2002) developed a model using ANN for downscaling GCM 
outputs to streamflows. Landman et al. (2001) forecasted seasonal streamflows using Canonical Correlation 
Analysis (CCA) and Perfect Prognosis method.  

Tisseuil et al. (2010) state that direct downscaling of GCM predictors to streamflows permits forecasting 
flows at a large spatial scale under changing climate, since the formulation of a direct relationship between 
streamflows and GCM outputs allows the generalisation and extrapolation of streamflow over a large area. 
One shortcoming of direct downscaling of GCM predictors to streamflows is that it simplifies the naturally 
complicated hydrologic cycle to a great extent, neglecting the influences of land use, soil cover, and 
groundwater storage on streamflow. The other major limitation of this technique is that it could only be used 
to predict unregulated streamflows in a catchment. This is because the statistical relationships derived 
between predictors and streamflows are independent of human regulations such as diversions and storages. 

The objective of the current study was to calibrate and validate a statistical downscaling model based on 
Least Square Support Vector Machine (LS-SVM) regression to downscale monthly GCM outputs directly to 
monthly streamflows. The objective was demonstrated through a case study applied to a streamflow station at 
GWMWater supply system in north-western Victoria. This paper discusses only the calibration and 
validation of the abovementioned streamflow forecasting model. Streamflow forecasting into future with the 
calibrated and validated model will be detailed in a future paper. 

2. STUDY AREA AND DATA 

The GWMWater system is a large multi-reservoir water supply system located in north-western Victoria, 
which was used as the case study for the present research. Prediction of streamflows in GWMWater’s 
catchment is crucial, as the system provides water for many domestic, industrial and irrigation needs. The 
current downscaling study limits its scope to a single streamflow site in the study region.  

For the calibration and validation of the downscaling model, National Center for Environmental 
Predictions/National Center for Atmospheric Research (NCEP/NCAR) monthly reanalysis data and monthly 
observed streamflow data at a streamflow site from 1950-2010 were used. These reanalysis data are the 
outputs of a GCM, corrected and quality controlled at several stages (Kalnay et al., 1996). Therefore, the 
reanalysis data are considered to be predictions of an ideal GCM (Cannon and Whitfield, 2002). The 
NCEP/NCAR reanalysis data were downloaded from the website (http://www.esrl.noaa.gov/psd/) of National 
Oceanic & Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) Physical 
Sciences Division. The quality controlled observed monthly streamflow record at the site concerned was 
obtained from GWMWater. 

3. METHODOLOGY 

The statistical downscaling of GCM outputs to any hydroclimatic variable involves building statistical 
relationships between GCM predictors and the catchment level hydroclimatic variables. In the present study, 
the catchment level variable was the monthly streamflow at a station and the predictors were the monthly 
NCEP/NCAR reanalysis variables. As mentioned in the Introduction, there is a wide variety of downscaling 
techniques in use. In this exercise, LS-SVM regression (LS-SVM-R) was employed to downscale 
NCEP/NCAR predictors to streamflows. Since the hydroclimatology at a certain point in a catchment is 
influenced by the atmosphere above and around it, a substantially large atmospheric domain was defined. 
Based on literature and hydrology a set of probable predictors corresponding to this atmospheric domain was 
extracted from the NCEP/NCAR reanalysis variables. The time series of streamflows and the potential 
predictors for each calendar month were separated into 20 year time slices. For each of these 20 year time 
slices, the Pearson correlation coefficients were calculated for each calendar month to identify the predictors 
which are mostly correlated with the streamflows. The best consistently correlated predictors over the three 
time slices were selected as potential predictors for the calibration and validation of the model. The 
consistency of the Pearson correlation between a predictor and streamflow was an important attribute since a 
good predictor of streamflow should show a consistent relationship over time. These potential predictors for 
the calibration period were standardised for each calendar month, based on their means and standard 
deviations for the calibration period. The standardisation of the potential predictors in the validation period 
was performed with the means and standard deviations corresponding to the calibration period of the data set. 
The model calibration and validation were performed for each calendar month by introducing the above 
standardised potential predictors to the LS-SVM-R model. This was done by initially inputting the three best 
correlated potential variables to the model for a certain month and adding the next best variables one by one, 
until the model performance is maximised for validation. The model calibration was performed with leave-
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one-out cross-validation and the validation was done as an independent simulation fixing the optimum model 
parameters yielded in calibration. The model performances in calibration and validation in each month were 
monitored with Nash-Sutcliffe efficiency (N-S). The generic methodology described here was applied to a 
streamflow site (inflow to the Bellfield reservoir) within the GWMWater supply system as a demonstration. 

3.1. Overview of LS-SVM-R  

SVM is a machine learning technique which has classification and function approximation capabilities. The 
concept of SVM classification (SVM-C) was first developed in 1960s. SVM regression (SVM-R) for 
function approximation was introduced in 1996 (Drucker et al., 1997). A detailed description on SVM theory 
is found in Vapnik (1999). SVM has a wide applicability in real world phenomena. Lin et al. (2006) 
predicted long-term river discharges with the SVM-R technique. Chen et al. (2010) and Ghosh and 
Mujumdar (2008) used SVM-R for downscaling GCM outputs to rainfall and streamflows respectively. 

LS-SVM is a simplified variant of original SVM which still preserves the qualities and advantages of the 
original SVM version (Zhou et al., 2011). The current study employed the LS-SVM regression (LS-SVM-R) 
to develop the downscaling model, due to its low computation cost and good generalisation performances 
(Suykens and Vandewalle. 1999). In SVM, a non-linear mapping function is used to map the non-linear input 
space to into a linear higher dimensional feature space (Tripathi et al., 2006). This process of mapping is 
simplified by a function called the kernel. There are several types of kernels available in the LS-SVM-R 
model, such as the linear, polynomial and radial basis function (RBF). In the LS-SVM-R model there are two 
types of tuning parameters in use, one is the regularisation parameter and the others are kernel parameters. 
The number of kernel parameters varies from kernel to kernel, but the regularisation parameter remains the 
same. When the LS-SVM-R model is used with the RBF kernel, γ and σ2 becomes the model tuning 
parameters, where γ is the regularisation parameter and σ is the width of the RBF kernel.  

According to Zhou et al. (2011) due to its simplified algorithm, LS-SVM requires much less effort in model 
training when compared with that of the original SVM. Due to these advantages, many researchers have 
applied LS-SVM in their research work. Zhou et al. (2011), Anandhi et al. (2009) and Tripathi et al. (2006) 
employed LS-SVM-R for downscaling GCM outputs to catchment scale hydroclimatic variables.  

4. APPLICATION 

4.1. Selection of atmospheric domain for downscaling 

The climate at a certain point on the ground is 
governed by a huge atmospheric domain 
above and around it. The exact dimensions of 
this influential atmospheric domain are 
unknown. In past literature, various authors 
have used different domain sizes for their 
atmospheric domain. Ghosh and Mujumdar 
(2008) used a 5 x 5 grid points around the 
study area for downscaling streamflows, while 
Tripathi et al. (2006) and Anandhi et al.(2008) 
used grids with 6 x 6 and 3 x 3 points for 
downscaling precipitation respectively. The 
present study uses a substantially large 
atmospheric domain of 7 x 6 grid points (each 
2.50 apart), while maintaining symmetry 
around the study area as shown in Figure 1. 

4.2. Selection of probable and potential predictors for downscaling 

The selection of probable predictor variables is regarded as the beginning of any downscaling activity. A 
GCM could produce large number of different outputs, but out of those only some of the predictors are more 
likely to influence the predictand. This subset of all the predictors is called the pool of probable predictors 
(Anandhi et al., 2008). These probable predictors vary from predictand to predictand.  In general, probable 
predictors for a downscaling study are selected based on past literature. In the present study, for downscaling 
of GCM predictors to streamflows, probable predictors were selected based on past literature as well as 
hydrology.  

Figure 1.  Atmospheric domain around GWMWater 
supply system used for downscaling 
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The 23 probable predictors selected for the downscaling exercise included, geopotential height at 200hPa, 
500hPa, 700hPa, 850hPa, 1000hPa pressure levels,  relative humidity at                             
500hPa, 700hPa, 850hPa, 1000hPa pressure levels, specific humidity at 2m height, 500hPa, 850hPa, 1000hPa 
pressure levels, air temperature at surface, 2m height, 500hPa, 850hPa, 1000hPa pressure levels, surface skin 
temperature, surface pressure, mean sea level pressure, volumetric soil moisture content in the 0-10cm soil 
layer and  10-200cm soil layer. Each of these predictors had a spatial dimension of 7 x 6 over the 
atmospheric domain shown in Figure 1. The volumetric soil moisture contents in the 0-10cm and 10-200cm 
soil layers were selected as probable variables purely based on the hydrology and the reset of the probable 
predictors were selected based on past streamflow downscaling studies by Tisseuil et al. (2010), Ghosh and 
Mujumdar (2008), Cannon and Whitfield (2002) and Landman et al. (2001).In this study the above 23 
probable predictors were considered to be common for all the calendar month of the year, for the streamflow 
station considered. These probable predictors were selected from the NCEP/NCAR reanalysis data pool. The 
NCEP/NCAR reanalysis data pool is widely used for the calibration and validation of downscaling models 
for variety of predictands.  

Potential predictor variables are a subset of probable variables which vary form streamflow station to station 
as well as from season to season. The set of potential predictors is the most influential variable set on 
streamflows, which is a subset of the probable predictor pool.  Predictor-predictand relationships vary 
seasonally due to changes in atmospheric circulations. Therefore, seasonal models based on wet/dry seasons 
(Chen et al., 2010) or the four seasons of summer, autumn, winter and spring (Timbal, 2009) have been used 
in the past. In this study, downscaling models based on calendar months were developed to better capture the 
seasonal variability of streamflow. 

In the current exercise, the Pearson correlation coefficient was used to identify the potential variables for 
each calendar month.  The records of streamflow and NCEP/NCAR probable predictors from 1950 to 2010 
were considered under three 20 year time slices 1950-1969, 1970-1989 and 1990-2010. The probable 
variables which displayed the best, statistically significant (95 % confidence level, p = 0.05) correlation with 
the streamflow, consistently over the three 20 year time slices were selected as potential variables. From the 
same probable predictor pool, potential predictors for each calendar month were extracted.  

4.3. LS-SVM-R downscaling model calibration and validation 

The LS-SVM-R model considered in the present study had two tuning parameters γ and σ2 where γ is the 
regularisation parameter and σ is the width of the RBF kernel. According to Tripathi et al. (2006) RBF kernel 
can map non-linear predictor-predictand relationships effectively to a higher dimensional space. The 
relationship between the streamflows and GCM predictors has a highly complicated non-linear nature. Since 
Tripathi et al. (2006), Anandhi et al. (2008) and Cheng et al. (2006) have applied RBF kernel successfully in 
their downscaling exercises, following that, the current study employed the same kernel.  

In this study the LS-SVM-R downscaling model was calibrated for the 40 year period 1950-1989 and 
validated for the 21 year period 1990-2010.Before the calibration and validation of the downscaling model 
the potential predictors used as inputs to the model were standardised.  The standardisation of NCEP/NCAR 
predictors scales down the data and eliminates the units of the variables. For the model calibration, the 
NCEP/NCAR potential predictors selected for each month were standardised by the subtracting the mean and 
dividing by the standard deviation corresponding to the calibration period 1950-1989. Also in validation, the 
potential predictors were standardised using the same mean and standard deviation corresponding to the 
calibration period. In model calibration these standardised potential variables were introduced to the LS-
SVM-R model in such way that, initially the three best correlated variables and then the other best correlated 
variables one by one. The model calibration was performed using the leave-one-out cross validation and the 
model parameter optimisation was based on the simplex algorithm. The model validation was done as an 
independent simulation fixing the optimum values of the tuning parameters, yielded in calibration. The model 
which displayed the highest performance in validation was considered as the optimum model. By this way 
the optimum number of inputs to the model was determined. The same calibration and validation process was 
repeated for each calendar month. The Figure 2 shows the variation of observed monthly flow and LS-SVM-
R downscaling model predicted monthly flow for the calibration (1950-1989) and validation (1990-2010) 
phases. The predictions of the calendar month based models were aggregated to produce a continuous time 
series of streamflow from 1950-2010. In the model calibration the values of γ and σ2 varied significantly over 
the 12 months of the calendar (γ range 7.5-998 and σ2 range 3.8-9901). The model displayed N-S coefficients 
of 0.73 and 0.47 in calibration and validation respectively. 
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Figure 2. Observed streamflow and SVM predicted streamflow. 
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Figure 3. Scatter plots for calibration and validation of the model 

Figure 3 shows the scatter plots 
corresponding to the calibration and 
validation phase. According to 
these scatter plots it was clear that 
in calibration, the model had a 
tendency of under-predicting peak 
flows and in validation it had a peak 
flow over-predicting trend. Further, 
both in calibration and validation 
zero flows were largely over-
predicted by the model. The over-
prediction of flow was very evident 
after 1997, during the validation 
phase which is depicted in Figure 2. 

 
As given in table 1, performances of the model had a clear seasonal 
variation. Among the four seasons summer and winter had the best 
N-S coefficient in the validation periods. Meanwhile autumn had 
the poorest prediction accuracy which was denoted by an N-S 
efficiency of -2.46. In the seasons of autumn and spring the model 
performed far better in calibration than in validation.  
 

5. DISCUSSION AND CONCLUSIONS 

The use of volumetric soil moisture content in the 0-10cm soil layer and 10-200cm soil layer for predicting 
streamflows had not been observed in any of the past studies performed on downscaling GCM outputs to 
catchment level streamflows. The variations in soil moisture content are highly associated with the 
atmospheric variability therefore the inclusion of soil moisture in a model could improve the climatic 
predictions. Further, the soil moisture governs the amount of water retained in soil influencing the rainfall 
and runoff relationship, and hence streamflows. The limited forecasting ability of the downscaling model in 
autumn in the current study was very consistent with the findings of Robertson and Wang (2008) where a 
Bayesian joint probability model was employed to forecast seasonal streamflows. This is mainly because the 
catchments in Victoria are usually at a dry state during the period leading to autumn, and during autumn, 
catchments wet up so it absorbs water, but this water makes little or no contribution to streamflow. The over 
prediction of peak streamflows after 1997 by the model was an evident phenomenon. When the time series 
plots of the NCEP/NCAR predictors were observed, an obvious change corresponding to this period was not 
seen. This suggested that the poor performance of the model after 1997 was due to the missing climate 
change signal in the NCEP/NCAR predictors. The streamflows also displayed poor correlations with the SOI 
index (El Niño Southern oscillation index) and NINO 3.4 index. Future work will continue the hunt for 
possible climate change signals. The downscaling model developed in the current study showed reasonable 
capability in predicting the streamflows in summer and winter although it failed largely in autumn. 
Downscaling streamflows from the GCMs skips complex hydrologic modeling, saves time and effort in 
predicting streamflows. In the present investigation NCEP/NCAR reanalysis data were used for the model 
calibration and validation meanwhile the future streamflow prediction will be done with the HadCAM3 GCM 
outputs.  

Table 1. N-S coefficients in Seasons 

Season Calibration Validation 

Summer 0.55 0.39 

Autumn 0.45 -2.46 

Winter 0.56 0.38 

Spring 0.62 0.16 
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