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Abstract: Water resources assessment and accounting research requires making the best use of mul-
tiple sources of data for producing reliable accounting predictions. For any given quantity of interest,
e.g. soil moisture, available sources of data could be directly observed in situ, derived indirectly from a
remotely-sensed surrogate (e.g. brightness temperature) using retrieval models, or output from determin-
istic hydrological models. Whether it be model-data fusion or the evaluation of remotely-sensed products,
multiple data sources for individual quantities of interest must be assimilated to optimize the use of avail-
able information. Popular data assimilation techniques focus heavily on assimilating time series at fixed
geographical locations. Yet, the resulting predictions typically show unrealistically large variability over
space. This suggests the need to assimilate spatial maps at fixed time points, in addition to time series at
fixed locations. Spatial statistical models, constructed in a Bayesian hierarchical framework, offer an intu-
itive and unifying approach for this purpose. It cohesively utilizes multiple data sources by addressing the
mismatch in both spatial and measurement scales between ground-based and remotely-sensed products;
it can also spatially interpolate missing data due to the remote sensor’s “blind spots.” In this paper, we use
the evaluation of the remotely-sensed soil moisture product, AMSR-E, to illustrate this statistical frame-
work. Specifically, a single statistical model can incorporate both point-level in situ data (benchmark)
and pixel-based AMSR-E data (product), as well as other related variables such as precipitation.
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1 INTRODUCTION

The Water Information Research and Development Alliance (WIRADA) conducts large-scale water re-
sources research. In a recent WIRADA project entitled Australian Water Resources Assessment (AWRA),
one of the primary objectives is the development of model-data fusion methods to blend deterministic
model outputs with observed data (van Dijk, 2010a). For any given quantity of interest to AWRA (soil
moisture, catchment runoff, etc.), available sources of data could be directly observed in situ, derived in-
directly from a remotely-sensed surrogate (brightness temperature, etc.) using retrieval models, or output
from deterministic hydrological models (van Dijk, 2010b). For the blending to be meaningful, a thorough
understanding of the error structure of each blended component is essential. Thus, a related research prob-
lem under AWRA is the evaluation of remotely-sensed products, such as Vrije Universiteit Amterdam’s
soil moisture product based on the Advanced Microwave Scanning Radiometer – Earth Observing System
(VUA AMSR-E) (Owe et al., 2008). That is, we wish to assess how well these surrogate-based AMSR-E
soil moisture data (henceforth, simply AMSR-E) reflect the true level of on-ground soil moisture.

In situ measurements of soil moisture recorded with ground probes are often referred to as “ground truth,”
a misnomer from a statistical standpoint. This is because measurements contain inherent uncertainty,
even if the ground probe technology were deemed most accurate and precise for measuring soil moisture.
Thus, the term “benchmark” is more appropriate for in situ soil moisture data. A quantitative evaluation
of the remotely-sensed AMSR-E requires, among other procedures, a sensible comparison of the product
to the benchmark. Such a task is not necessarily straightforward due to the mismatch in both spatial and
measurement scales between ground-based and remotely-sensed products. To complicate matters, the re-
mote sensor’s “blind spots” (due to a combination of heavy vegetation, unfavourable weather conditions,
instrumentation failure, etc.) often lead to swaths of missing data.

Evaluation methods from the literature (e.g. Draper et al., 2009) typically address missing data and the
mismatch in scales of observed data in a semi-qualitative fashion. Data assimilation techniques based on
the Kalman filter (KF) are also used (Crow and Zhan, 2007) and conventionally applied to each pixel, thus
focusing heavily on assimilating time series at fixed geographical locations. Yet, the resulting assimilated
values typically show unrealistically large variability among adjacent pixels (e.g. Fig. 3 in Crow and Zhan,
2007). The 3D-KF (de Lannoy et al., 2010; Reichle and Koster, 2003; Reichle et al., 2002) induces spatial
smoothing without a parametric spatial correlation model, although basic understanding of the physical
phenomenon of interest can suggest the parametric structure for both spatial and temporal dependence.

Thus, we consider complementary modeling frameworks that assimilate spatially (using data from spatial
neighbours to update state estimates) at fixed time points in addition to temporally at fixed locations.
Statistical spatio-temporal modelling (Cressie and Wikle, 2011) offers an intuitive and unifying approach
for this purpose. This statistical inferential approach simultaneously models multiple spatial time series,
each being a temporal sequence of maps; a single model can address the mismatch in both spatial and
measurement scales between ground-based and remotely-sensed products, without relying on qualitative
scale realignment or linearity/Gaussian assumptions of the KF. The approach would yield a single model
that can address various AWRA research problems comprehensively and simultaneously, including prod-
uct evaluation, data assimilation, and model-data fusion.

Focus of this paper. Constructing and fine-tuning a unifying model to address the wide range of AWRA
objectives is a laborious process. As a start, we focus on evaluating AMSR-E via statistical spatial
modelling (Banerjee et al., 2004). Thus, we assimilate soil moisture maps from the same static time
frame. We employ Bayesian hierarchical modelling to incorporate both point-level in situ data (typically
sparse) and pixel-based remotely-sensed data (mostly contiguous), as well as another related variable,
precipitation (of a third spatial scale). As a bonus, this framework regards interpolation of missing data
as part of the one-step statistical inference. Model implementation and data imputation are via Markov
chain Monte Carlo (MCMC) with Gibbs sampling (Chiu and Lehmann, 2011). Hierarchical modelling
and various MCMC sampling methods are reviewed by Gelfand and Smith (1990).

2 SOURCES OF SOIL MOISTURE AND RELATED DATA

The Murrumbidgee River Catchment (MRC) in eastern Australia is one of the main geographical regions
of focus by AWRA. For our hierarchical spatial model, we include the following MRC quantities, directly
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Figure 1. Data on AMSR-E (v, left) and transformed AWAP moving average (p, right) for the MRC
on 2007-01-20 (horizontal and vertical axes denote longitude and latitude). Note the different intensity
scales. In situ OzNet stations are marked by “+”. AMSR-E pixels with missing data are outlined in dark
blue; intensity shown for these pixels are imputed according to the hierarchical model in Section 3.

v p
(% vol) (mm1/4)

comparable to those used by Draper et al. (2009) and Crow and Zhan (2007) for their product evaluation.
A detailed description of these data sources appears in Section 3 of Henderson et al. (2011).

1. Point-level soil moisture data from 38 MRC sites in the OzNet Hydrological Monitoring Network
(http://oznet.org.au) (Fig. 1). Of the available variables, we consider ground soil moisture read-
ings (% volume) at the shallowest depth (0–5 or 0–8cm, depending on the station) at time-of-day
closest to 01:30 (01:20 or 01:30, depending on the station), so as to minimize incompatibility be-
tween in situ and descending pass remotely-sensed data. (Ascending pass data are not considered.)
Availability of data varies between the years 2001 and 2010, depending on the station.

2. The gridded AWAP precipitation product (Jones et al., 2009) for daily rainfall. The AWAP time
frame spans the latter part of 2002 to the end of 2009 (taken to coincide with AMSR-E data).
AWAP pixels are 0.05◦ by 0.05◦. We consider AWAP data for the MRC only.

3. The remotely-sensed AMSR-E product for soil moisture (Fig. 1). We consider (VUA) AMSR-E data
over 0.25◦ by 0.25◦ pixels, available for the entire Australian mainland except for “blind spots.”
Edges of these pixels align perfectly with AWAP pixel edges. Thus, each AMSR-E pixel contains
exactly 25 AWAP pixels. For spatial modelling, we consider C-band data from the descending pass
over the MRC only, comprsing M=312 AMSR-E pixels.

3 A HIERARCHICAL STATISTICAL SPATIAL MODEL

For a preliminary model, we consider precipitation to be the sole driver of soil moisture. Inspired by
McMillan et al. (2010), we construct our fixed-time spatial model to comprise the following statements.

Relating ground data and small-pixel truth. Let smr be the rth AWAP pixel inside the mth AMSR-E
pixel for r=1, . . . , 25 and m=1, . . . , M ; ψmr≡ψ(smr) the true (latent) soil moisture spatially averaged
across smr; and gmrk the point-level OzNet soil moisture reading at the kth ground station inside smr for
k=1, . . . , Kmr (defined only for AWAP pixels with Kmr≥1). Then, a measurement model is

gmrk = ψmr + εmrk , εmrk
ind∼ N(0,σ2

m) (1)

where the ground instrument is unbiased (typically assumed for the benchmark), and its behaviour, invari-
ant within AMSR-E pixels but is subject to variation across pixels. Spatial variation of the error structure
is not assumed across the smaller AWAP pixels to ensure estimability of the within-pixel variance σ2

m.

Relating AMSR-E and big-pixel truth. Let Bm be the mth AMSR-E pixel; vm≡v(Bm) the AMSR-E
value at Bm; and ψm≡ψ(Bm)=(1/25)

�
r ψmr the true soil moisture spatially averaged across Bm. Then,

vm = α0 + α1ψm + δm , δm
iid∼ N(0,σ2

δ ) . (2)

Hence, (2) assumes that (i) AMSR-E data have been calibrated to represent a linear transformation of
the underlying truth plus uncertainty with regression coefficient α=(α0,α1), and (ii) the behaviour of the
AMSR-E device and the calibrated data is invariant over space with constant error variance σ2

δ .

Relating small-pixel truth and antecedent precipitation. We wish to model the true soil moisture as (i)
being driven by antecedent precipitation (AP), and (ii) depending linearly on a transformation of this
moving average, subject to additive error with constant variance σ2

η. Then,
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ψmr = β0 + β1pmr + ηmr , ηmr
iid∼ N(0,σ2

η) , (3)

where pmr≡p(smr) is the 4th-root transformation of a 20-day AWAP moving average at smr (Fig. 1).
Here, the transformation and moving average bandwidth are based on exploratory analyses (see Hender-
son et al., 2011, Section 3 for details).

Relating precipitation and space. Let xmr=(xmr1, xmr2) be a linear transformation of the longitude-
latitude coordinates of the top-left corner of smr; hγ a polynomial of xmr with a pre-specified order and
coefficient vector γ; and φmr≡φ(smr) the spatial random error associated with smr. Then,

pmr = hγ(xmr) + φmr + ζmr , ζmr
iid∼ N(0,σ2

ζ ) . (4)

We take the quadratic hγ(xmr)=γ1xmr1+γ2xmr2+γ3xmr1xmr2+γ4x2
mr1+γ5x2

mr2 as an initial model here.

Spatial patterns. We take a 5th order Gaussian conditional autoregressive (CAR) model for φ={φmr},

φ ∼ CAR(5; τ2) (5)

with parameter τ2. A 5th order adjacency of AWAP pixels induces spatial dependence beyond one but
under two AMSR-E pixels. See Chiu and Lehmann (2011) Appendix A for technical details of (5).

Prior distributions. Finally, we take values of a, a1 and a2 so that the following priors are reasonable
(see Chiu and Lehmann, 2011, Appendix B):

α1,β1
iid∼ N(3a−1/2, a−1) , β0, γq

iid∼ N(0, a−1) , σ2
m,σ2

δ ,σ2
η,σ2

ζ , τ2 ind∼ IG(a1, a2) (6)

for all q=1, . . . , 5 and all m∈S≡{m:
�

r Kmr≥ 1}. Here, IG(a1, a2) is the inverse-Gamma distribution
with mode a2/(a1 + 1). Centring the slope priors at 3 times the prior standard deviation is to impose a
large prior probability of positive association between v and ψ, and between ψ and p.

Technical remarks. (i) Statements (1)–(6) constitute our single hierarchical model. Marginally, response
quantities in all of (1)–(5) exhibit spatial autocorrelation due to the model’s hierarchy. (ii) The hierar-
chical modelling framework does not require linearity/Gaussian assumptions; they are assumed in our
preliminary research here to reduce complexity. (iii) In (3), the driver of true soil moisture is taken to be
a manifestation of the true AP. At the expense of estimating extra nuisance parameters, (3) can be broken
down further: AP being the regressor of each of ψ and p; true AP would then replace p in (4). We have yet
to pursue this extension. (iv) It may be unreasonable to assume either α0=0 given ψm in (2) or β0=0 given
pmr in (3). Yet, having α0,β0 �=0 makes these intercepts statistically unidentifiable/confounded. Since (3)
is nested in (2), we preserve β0 �=0 and set α0=0. The same reason applies to the absence of an intercept
in (4). Thus, β0 should be interpreted as the combined bias from all of (2)–(4) in the model hierarchy.
(v) Gibbs sampling and data imputation details for (1)–(6) appear in Chiu and Lehmann (2011).

4 EVALUATING AMSR-E FOR THE MRC

As a preliminary exercise for this ongoing research, this paper focuses on the inference of daily ψ maps
on selected days from January (summer) and June (winter) between 2007 and 2009. Then, the approach
as described in Section 3.3 of Chiu (2011) is employed to provide a quantitative evaluation of AMSR-E.
This approach relies on the ratio Rm=σ2

δ/σ2
m as a model-based comparison of performance between the

AMSR-E product and OzNet benchmark in Bm, m∈S. Specifically, Rm≤1 would suggest that AMSR-
E is no worse than OzNet for m. Unlike Chiu (2011), our paper does not model temporal dependence
alongside spatial dependence. Thus, we make inference for Rm per selected day, where a graphical
display of, say, 95% credible intervals (CIs) for Rm (over all 21 Bms in MRC for which m∈S) can be
used to summarize the performance of AMSR-E against the benchmark over the MRC on that particular
day. For example, consider Fig. 2. It shows that on 2007-01-20, a very small segment of each 95% CI for
Rm is below 1; this suggests that, given the data and according to our model, it is unlikely for AMSR-E
to perform better than OzNet anywhere in the MRC on that day. Similar patterns are seen earlier on 2007-
01-08, except for the high credibility that AMSR-E performs better than benchmark in 7 of the 21 pixels
(3 along the upper MRC perimeter, 1 in the Yanco study area, 2 and 1 respectively in the Kyeamba and
Adelong sub-catchments). However, this day-to-day fluctuation of AMSR-E’s performance could well
be due to temporal autocorrelation not being handled by the model of this paper, and is analogous to the
pixel-to-pixel variation mentioned in Section 1 for temporally assimilated quantities.
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Figure 2. Posterior inference for σδ and the 21 values of σms and Rms on the 8th (top panels) and
20th (bottom panels) of January 2007. “Posterior” refers to the conditional behaviour of an unobserved
quantity given the OzNet, AMSR-E, and AWAP observations. There is a 95% posterior chance that the
true Rm=σ2

δ/σ2
m lies inside the 95% CI in red; a blue “x” denotes the posterior mean for Rm.
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Figure 3. Left: Posterior mean, denoted by �ψ, for latent soil moisture ψ across the MRC on 2007-01-20.
Right: 95% CI (red bar) and posterior mean (blue “x”) for ψ across selected AWAP pixels appearing as
white “+” on the left panel, ordered from top to bottom then left to right.

5 LATENT SOIL MOISTURE AND OTHER UNOBSERVED QUANTITIES

While the evaluation of AMSR-E against benchmark is the primary goal of our model, a convenient
bonus due to the model is our ability to define a new soil moisture product, �ψ (Fig. 3), which estimates ψ
according to the fixed-date spatial assimilation with OzNet, AMSR-E, and AWAP data. Given the sparsity
of OzNet stations, one cannot expect g to have a heavy influence on the overall �ψ map. In contrast, the
resemblance on 2007-01-07 between v in Fig. 1 and �ψ in Fig. 3 (despite their different spatial scales)
suggests that the information about latent soil moisture is dominated by AMSR-E and less so by AWAP.
This dominance is not consistent over time. Specifically, Fig. 4 shows that for 2009-06-22, �ψ combines
the flatness of the v surface and the spatial features of the p surface.

Date-specific posterior behaviour is also evident in dispersion parameters such as σm, as we have dis-
cussed for Rm which depends on σm. Moreover, despite only two different prior distributions (see Chiu
and Lehmann, 2011, Appendix C) being used for all 21 values of σm, the assimilation for 2007-01-08
yields 21 distinguishable posterior distributions (Fig. 2, top left). In contrast, the assimilation for 2007-01-
20 had little influence on the inference for σm so that the posterior and prior are virtually identical (Fig. 2,
bottom left). On both days, the posterior of σδ greatly differs from the prior (not shown), suggesting the
data’s heavy influence on the inference for this parameter.

Our inference also allows us to diagnose the adequacy of the model. Indeed, the linearity and Gaussian
assumptions throughout the model hierarchy are somewhat inadequate, as suggested by negative soil
moisture values covered by the 95% CIs for ψ (Fig. 3) and other quantities (not shown). The dilemma here
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Figure 4. Left: Estimated latent soil moisture ( �ψ), AMSR-E (v), and transformed AWAP moving aver-
age (p) on 2009-06-22 (latitude axis suppressed). Note the different intensity scales. Right: 95% CI (red
bar) and posterior mean (blue “x”) for γq, q=1, . . . , 5 from left to right, on 2007-01-20.
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Figure 5. Left: Posterior mean, denoted by �φ, for spatial random effect φ across the MRC on 2007-01-20.
Right: 95% CI (red bar) and posterior mean (blue “x”) for φ across selected AWAP pixels appearing as
white “+” on the left panel.
is that these assumptions are standard for measurement errors such as those for a benchmark; yet, if latent
soil moisture were 0, then unrealistically these assumptions would imply a 50% probability for a probe
to give negative values. Currently, we are considering alternative assumptions to address this dilemma.

Another feature to diagnose is the form of the spatial polynomial hγ in (4). The 95% CIs for γq in Fig. 4
suggest a high credibility for hγ to not be a quadratic but a linear function of latitude and longitude with
no interaction term. This is the case also for other selected dates we have studied (not shown).

A key assumption for taking the modelling approach of this paper is that spatial autocorrelation is sub-
stantial enough to warrant an entirely different framework from that for fixed-grid temporal assimilation.
Fig. 5 shows the map of �φ, the posterior mean for the spatial random effect φ that underlies the model
hierarchy. Non-random spatial patterns (hence, spatial autocorrelation) are clearly visible.

A final set of unobserved quantities of interest is missing AMSR-E and OzNet data (AWAP data are
complete). Figs. 1 and 4 show imputed AMSR-E values using the posterior mean (pixels outlined in dark
blue), and similarly for OzNet values in Fig. 6. As is the case for any unobserved quantity in a Bayesian
model, CIs can be easily produced for missing values of v and g (not shown).

6 CONCLUSIONS

Through a statistical spatial model for the evaluation of AMSR-E, we have laid out the unifying aspect
of Bayesian hierarchical spatial modelling in water resources research involving complementary sources
of data. Indeed, Bayesian hierarchical modelling is a powerful tool for direct statistical inference of any
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Figure 6. OzNet soil moisture observations (grey) and imputed values (white) on 2007-01-20. “A”
stations are in Adelong, “K” are in Kyeamba, “M” are along the MRC perimeter, and “Y” are in Yanco.

g
(% vol)

unobserved quantity in the model, whether it be missing in situ data, an abstract latent parameter such as
true soil moisture on an infinitesimal time and spatial scale, and so on. Future attempts to improve model
assumptions, incorporate additional drivers of latent soil moisture, and extend the modelling framework
of this paper to the temporal domain will lead to a fully unified spatio-temporal approach.
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