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Abstract: Short-term streamflow forecasting is a crucial element in any regulated river system operation. 
The multiple benefits from an improved streamflow forecasting capability include: (i) an enhanced ability to 
predict the volumes and timing of flood events, (ii) improved water use efficiency through better anticipation 
of river inflows (particularly associated with inflows from unregulated tributaries), (iii) a concomitant 
reduction in operational losses due to over releases from water storages, and (iv) fewer shortfalls in supplying 
water orders. 

 Over the past few decades, many numerical streamflow prediction techniques using observed time series 
(TS) have been developed and widely used in water resources planning and management. Recent advances in 
quantitative rainfall forecasting by numerical weather prediction (NWP) models have made it possible to 
produce improved streamflow forecasts using continuous rainfall-runoff (RR) models. In the absence of a 
suitable integrated system of NWP, RR and river system models, river operators in Australia mostly use 
spreadsheet-based tools to forecast streamflow using gauged records. The eWater Cooperative Research 
Centre of Australia has recently developed a new generation software package called Source Integrated 
Modelling System (Source IMS), which allows a seamless integration of continuous RR and river system 
models for operational and planning purposes.  
 
A study was undertaken using Source IMS for a comparative evaluation of streamflow forecasting methods 
on a regulated section of the Murray River, a major stream in the Murray-Darling Basin, Australia. The 
methods include three TS based linear techniques and, RR models of two selected unregulated sub-basins 
that drain into the river reach. The results were compared using three statistical indicators with the actual 
forecasts made by the Murray river operators and the observed data. The results show that while streamflow 
forecasts by the river operators were reasonably accurate up to day 3 and traditional TS based approaches 
were reasonably accurate up to 2 days, well calibrated RR models can provide better forecasts for longer 
periods when using high quality quantitative precipitation forecasts. The river operators tended to 
underestimate large magnitude flows. This paper presents the outcomes from the case study. The uncertainty 
associated with forecasts using different datasets and methods and, potential operational benefits of the short-
term streamflow forecasts are also discussed. 
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1. INTRODUCTION 

Many activities involving water resource systems require streamflow forecasts. Linear models based on 
observed time series (TS) have been used in water resources management for the past several decades to 
forecast streamflows. Linear TS models can be classified in two categories depending on the number of TS 
involved in the model: a) single variable models and b) models using exogenous variables. Two widely used 
TS linear models are Auto-Regressive (AR) and Auto-Regressive Moving Averages (ARMA) models. A 
variation of the ARMA model is the Auto-Regressive Integrated Moving Average (ARIMA) model. The 
name “Box & Jenkins methods” is commonly used when one of the ARMA methods is used (Box and 
Jenkins, 1970). An ARMA model with exogenous or independent variables (e.g., rainfall) is called an 
ARMAX model (Box and Pierce, 1970). Many research investigations have been conducted to evaluate the 
efficiency of these methods in different catchments around the World (Vicens et al. 1975; Newbold 1981; 
Awwad and Valdes 1992; Tang et al. (1991). General consensus is that among TS methods with a long 
memory, Box & Jenkins methods have the best performance.  
 
Whilst TS analysis still plays an important role in streamflow forecasts using linear models, a number of 
studies have suggested that it is possible to improve the accuracy of probabilistic streamflow forecasts, 
particularly short-term forecasts, using meteorological forecasts by numerical weather prediction (NWP) 
models (Anderson et al., 2002; Koussis et al., 2003; Clark and Hay, 2004; Tucci and Collischonn, 2006). For 
many years in Australia, the National Meteorological and Oceanographic Centre (NMOC) of the Bureau of 
Meteorology (BoM) ran NWP models to provide a suite of analysis and prediction products (BoM, 2009). 
Whilst the accuracy of weather forecasts has steadily improved over the years, it has been challenging to 
integrate quantitative precipitation forecasts (QPF) into flood forecasting operations, which require suitable 
techniques, such as hydrological models, to translate the rainfall to streamflow (Collischonn et al., 2005; 
Tucci and Collischonn 2006; Cuo and Pagano, 2011). Gouweleeuw et al. (2009) conducted an analysis of 
flood forecasting using QPF from several of the BoM’s NWP models and found that QPF from NWP model 
output data can assist in early flood detection when used with a well calibrated hydrological model. In the 
absence of a suitable integrated system of NWP models and well calibrated hydrological models for 
streamflow prediction, river operators in Australia mostly use gauged flow data to forecast streamflow using 
spreadsheet based tools. 
 
The eWater Cooperative Research Centre of Australia has recently developed a new generation river system 
software package called the Source Integrated Modelling System (Source IMS) for operational and planning 
purposes in regulated and unregulated river systems (Welsh et al., 2011). In this study, the Source IMS is 
used to undertake an evaluation of streamflow forecasts by continuous RR models with QPF and three TS 
based linear forecasting techniques, namely: AR, ARMA and ARMAX models with historical data for two 
selected unregulated river basins in the Murray River system in the Murray-Darling Basin (MDB).The 
forecasts by these techniques were statistically compared with the actual Murray river operator forecasts and 
recorded gauged flow to evaluate their performances.    

2. METHODOLOGY 

2.1. Source Integrated Modelling System 

The Source IMS provides tools for the prediction and quantification of water and associated constituents 
from catchments to the estuary. The components used to model regulated rivers within the Source IMS 
encompass (and enhance) the key functionalities of the three widely used river system modelling tools in 
Australia: IQQM (Simons et al., 1999), REALM (Perera, 2005) and MSM-Bigmod (Close, 1986), as well as 
new scientific research. The physical and regulatory processes and management rules of a regulated river 
system are conceptualised in six major components within the Source IMS simulation engine: Catchment 
runoff; River system network; Interactions between river and groundwater systems; River regulation and 
storages; Demands (urban, irrigation and environmental) and Complex river management rules. Each of these 
includes several subcomponents to comprehensively represent the underlying processes, rules and 
regulations. The various components and their functionalities are elaborated in Welsh et al. (2011). The 
system as a whole is extensible through expression editor and plug-ins functionalities, which can be used to 
add new modelling components that are not otherwise available in the system.  
 
The Source IMS includes three scenario modes: catchment runoff (hereafter termed Source catchment), river 
manager (hereafter termed Source RM) and river operator (hereafter termed Source RO). Source Catchment 
includes a conceptual RR modelling framework for estimating catchment water yield and runoff 
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Table 2: Statistical indices for analysis of model performance 
Coefficient of determinant 

(R2) 
Mean Absolute 
Error (MAE) 

Mean Absolute Percentage 
Error (MAPE) 

1 −෍ ൫ ௜ܻ௢௕௦ − ௜ܻ௦௜௠൯ଶ௡௜ୀଵ෌ ሺ ௜ܻ௢௕௦ − yොሻଶ௡௜ୀଵ
1n෍ห ௜ܻ௢௕௦ − ௜ܻ௦௜௠ห௡
௜ୀଵ  

 

ඩ1n෎ቤ ௜ܻ௢௕௦ − ௜ܻ௦௜௠௜ܻ௢௕௦ ቤ௡
௜ୀଵ  

Where, yobs: observed data, ysim: simulated data, ŷ: mean of observed data, n: 
sample size. 

Figure 1: Map of the study area showing the location of the 
Kiewa and Ovens basins 

characteristics. The framework currently provides the user with an option to choose from six conceptual daily 
RR models: AWBM (Boughton, 2004), IHACRES (Croke et al., 2006), Sacramento (Burnash et al., 1973), 
SIMHYD (Chiew et al., 2002), SMARG (Vaze et al., 2004) and GR4J (Perrin et al., 2003). These models 
can be calibrated using observed climate and streamflow data in the gauged catchments using a combination 
of objective functions and optimisation methods. Outputs from NWP models can be dynamically linked to 
Source Catchment for streamflow forecasting. Source RO is primarily designed for river system operators to 
forecast and route flow for daily river operations. Source IMS allows users to incorporate user-specified 
forecasting techniques in Source RO through plug-ins. 

2.2. Quantitative Precipitation Forecasts by NWP Models 

The NMOC of the BoM runs several NWP models to generate a suite of analysis and prediction products. 
These models operate at a range of temporal and spatial resolutions, different spatial domains and with 
varying forecast lead times (BoM, 2009). The BoM used the GASP, LAPS, TXLAPS and MESOLAPS NWP 
models until 2009. In 2009, the BoM developed a new system of NWP models called ACCESS (Australian 
Community Climate and Earth-System Simulator). In 2010, ACCESS replaced the GASP, LAPS, TXLAPS 
and MESOLAPS NWP systems (BoM, 2010). In this study, QPF by LAPS and ACCESS-R were used. 

2.3. Traditional Time Series Analysis Methods 

The mathematical expressions of the three traditional linear TS models used in the study are shown in Table 
1. The notation AR(p) refers to an AR model of order p. ARMA(p, q) refers to an ARMA model, where p is 
the order of the autoregressive part and q is the order of the moving average part. The notation of ARMAX 
model is ARMAX(p, q, b), which refers to the model with p autoregressive terms, q moving average terms 
and b exogenous input terms. 
 
Table 1: Mathematical expressions of three TS linear models: AR, ARMA and ARMAX 

AR(p) ARMA(p, q) ARMAX(p, q, b) X୲ = ܿ +෍ ୧X୲ି୧ +௣௜ୀଵ
୲  

X୲ = ܿ + ୲ +෍ ୧X୲ି୧ +௣௜ୀଵ ∑ ୧୲ି୧௤௜ୀଵ
  

X୲ = ୲ +෍ ୧X୲ି୧ +௣௜ୀଵ ∑ ୧୲ି୧௤௜ୀଵ +෍ ୧d୲ି୧௕௜ୀଵ
  

Where, ϕ1,......,ϕp and θ1, ..., θq are the parameters of the model, c is a constant, εt, εt-1, ... are white noise error terms and η1,....., ηb are 
the parameters of the exogenous input dt. The constant term is omitted by many for simplicity. 

2.4. Methods for statistical analysis  

The coefficient of determination (R2), 
mean absolute error (MAE) and mean 
absolute percentage error (MAPE) were 
used to evaluate the forecasts. The 
equations of R2, MAE and MAPE are 
shown in Table 2. R2 ranges from 0 to 1, 
with higher values indicating less error 
variance. The MAE is a quantity used to 
measure how close forecasts or predictions 
are to the eventual outcomes. MAPE is a variation of MAE, and usually expresses accuracy as a percentage. 
A MAPE of zero indicates a perfect fit. 

3. STUDY AREA 

The upper part of the Murray River 
system from Hume Dam downstream to 
Yarrawonga Weir was selected as the 
case study area (Figure 1). There are two 
major unregulated river basins, Kiewa 
and Ovens, located between the Hume 
Dam and the Mulwala Lake. The total 
area of the Kiewa basin is about 1,749 
km2. The Ovens basin covers an area of 
about 7,813 km2. These two basins 
contribute a significant amount of inflow 
to the Murray River.  
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Table 3. Calibration statistics (NSE and Water Balance Error) for the 
six RR models 

Basin  AWBM GR4J IHACRES Sacramento SIMHYD SMARG
Kiewa NSE 0.81 0.81 0.80 0.78 0.84 0.79 

WBE (%) 1.30 -1.79 -2.53 -5.72 0.68 -3.08 
Ovens NSE 0.85 0.94 0.83 0.93 0.88 0.90 

WBE (%) 1.78 -0.55 -0.21 0.67 3.66 3.22 

4. SIMULATION 

The Source IMS was set up to simulate runoff from the Kiewa and Ovens basins using the selected forecast 
techniques, namely: the RR models built into the Source IMS and the AR, ARMA and ARMAX models. For 
the comparative analysis, the gauging stations at Bandiana in the Kiewa basin and at Wangaratta in the Ovens 
basin were selected based on the availability of long-term gauged data. A total of 74 operator forecast events 
between 2000-2010 were identified from the Murray river operators’ spreadsheets. The Murray river 
operators use cell formulas to forecast the inflows from the Kiewa and Oven’s rivers. The formulas apply 
spread factors to the daily observed flows at upstream gauging stations, and a value for losses. The 
observations at Mongans Bridge on the Kiewa River are used to forecast the flow at Bandiana, whereas the 
observations at Cheshunt on the King River and Rocky Point on the Ovens River are used to forecast flow at 
Wangaratta. The river operators have different formulas for winter/summer and low/medium/high flow 
periods. Switching between formulas is a manual process and dependent on the operator’s judgment. During 
rainfall events it is not uncommon for the operator to override the forecast cell formula with a new value, 
usually based on historical records from similar rainfall events. 
 
The six RR models of Source catchment were calibrated against the observed flow data at Bandiana and 
Wangaratta prior to their application in the streamflow forecasting. The statistical package, R, was initially 
used to estimate the parameters for the AR, ARMA and ARMAX models for the selected forecast events 
using methods based on the Kalman filter. The optimal orders of AR and ARMA for the selected forecast 
events were established by analysing the Akaike Information Criteria (Akaike, 1973). Observed rainfall from 
the previous time step was used as the exogenous variable for the ARMAX model. The established models 
were then incorporated into a Source RO scenario using the Expression Editor functionality of the software 
package. The simulated streamflows by different models were compared with the forecasts made by river 
operators and the gauged data.  

4.1. Calibration of RR Models 

The calibration results for the six 
RR models for both basins are 
summarised in Table 3. There are 
marginal differences in the 
calibration NSE and water balance 
error (WBE) between the six 
models. These differences provide 
an indication of the uncertainty introduced into the modelling results due to utilising different RR models 
(conceptually similar but with different model structures) with the same input climate and streamflow data. 
The calibration NSE for the six models in the Kiewa basin varies between 0.78 and 0.84 with a median of 
0.81; the WBE varies from 1.3% to 5.72% with a median of 2.16%. The results for the Ovens basin, and the 
validation results for both the catchments, show similar variability to the calibration results for the Kiewa 
basin. The RR models that performed best in the calibration (i.e., SIMHYD for Bandiana and GR4J for 
Wangaratta) were selected for streamflow forecasts. The observed rainfall was used as the input in the RR 
model assuming that the rainfall forecast was equal to the observed rainfall (“Perfect rainfall forecast”). The 
QPF by two different NWP models (LAPS and ACCESS-R) were subsequently used in the RR model. LAPS 
and ACCESS-R provided QPF of up to 3 days at an hourly resolution. They were converted to a daily 
resolution by matching the forecast and observed periods. Based on the availability of data, QPF by the 
LAPS model was used for the period of 2005-2006 and ACCESS-R for 2010. 

5. RESULTS  

The R2, MAE and MAPE values for the selected forecast techniques, including the operator forecasts for the 
selected 74 events between 2001-2010, are presented in Tables 4(a) & (b) for Bandiana and Wangaratta, 
respectively. For the RR models, these values are based on the simulated streamflow using the perfect rainfall 
forecast. It can be observed from the tables that the predictions for different forecast days by the AR, ARMA 
and ARMAX models were similar. Whilst the ARMAX model provided better results for Bandiana, the AR 
model results were slightly better for Wangaratta. The improvement in forecast by ARMAX with the 
observed rainfall as the exogenous variable was not found to be very significant. The variation in the outputs 
from the TS approaches was much smaller compared to the other two methods. Hence, the ARMA model 
results were used as the representative outcomes from the three TS approaches for the rest of the analysis. 
The operator forecast at Bandiana for day 1 shows a good correlation with the observed data with a R2 value 
of 0.83 and can be considered to be reasonably accurate with MAPE below 20%. However, the quality of the 
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Table 5: Volumetric differences of 
observed rainfall and QPF by LAPS 
and ACCESS-R at Bandiana 
Volumetric 
difference 
(in mm) 

NWP model Forecast in Day 
1 2 3 

Average LAPS -6.39 -1.95 -4.79
ACCESS-R -0.47 -1.76 0.72

Max LAPS 5.90 6.91 5.09
ACCESS-R 2.75 0.08 11.85

operator forecast progressively decreases with subsequent forecast days. On day 2, the R2 value was much 
lower and the MAPE increased to over 20%. The operator forecast showed a good correlation with the 
observed data up to day 5 at Wangaratta, however, the MAE and MAPE values were relatively high from day 
3 onwards. The forecast by the ARMA model shows a high correlation with the observed data for day 1 for 
both locations with R2 ranging between 0.86-0.90. The MAPE of the ARMA model forecast for day 1 was 
relatively lower at Bandiana. The ARMA model forecast showed good correlation with the observed data for 
day 2 at Bandiana with a R2 value of 0.79, but the MAPE was above 21%. The ARMA model forecast at 
Wangaratta was of lower quality with 37% MAPE and a R2 value of 0.51. The ARMA model forecast 
became less reliable at both locations for the subsequent days with a significant reduction in R2 values and 
increase in MAPE. The RR model forecasts at both locations were consistent for the entire forecast period 
compared to the other two methods. The RR model forecast shows a high correlation with the observed data 
for the entire period with R2 values ranging between 0.74-0.86 at Bandiana and between 0.85-0.91 at 
Wangaratta. The MAPE values ranged between 7-17% at Bandiana and between 22-30% at Wangaratta for 
the forecast period. 
 
Table 4: A comparison of forecasts by the Murray river operator, RR, AR, ARMA and ARMAX models  

a) at Bandiana b) at Wangaratta 

 

 
From these results, it can be inferred that while the operator forecast showed better agreement with the 
observed flow up to day 2 at Bandiana and up to day 3 at Wangaratta, beyond that the RR model produced 
outputs with a higher degree of accuracy with “perfect rainfall forecast”. It is noted that the accuracy of the 
outcome of the RR model is highly dependent on the selection of the model and its proper calibration. The 
NSE values of the two selected RR models varied between 0.84-0.93 for the two basins. This indicates that a 
reduction of uncertainty in RR model calibration can in turn reduce the uncertainty in forecasts.  
 
Figure 3 shows a statistical comparison between the operator forecast and the forecast by the RR model at 
Bandiana with QPF from LAPS and ACCESS-R. The level of accuracy of the streamflow forecast by the RR 
model with LAPS and ACCESS-R QPF is found to be relatively lower, which can be attributed to the 
maximum and average volume differences between the observed 
rainfall and QPF during the periods of the selected events as 
shown in Table 5. The MAE and MAPE of forecasts by the RR 
model with LAPS QPF were better than that with QPF from 
ACCESS-R. However, the forecast by the RR model with QPF 
from ACCESS-R showed a better correlation. It is worth noting 
that these two sets of results are from different periods with 
different numbers of events and flow magnitude ranges. From 
these results, it is clear that there is still significant uncertainty 
involved with QPF by different NWP models.  
  

Forecast 
technique 

Stat 
indices 

Forecast in day 

1 2 3 4 5 6 7 
Operator 
  
  

MAE  
(in ML) 

631.92 682.09 726.55 742.49 1053.86 1692.95 1559.55

MAPE  
(%) 

17 21 23 25 33 38 38

R2 0.83 0.65 0.55 0.50 0.41 0.17 0.24
RR 
model 
  

MAE  
(in ML) 

366.01 395.41 441.79 647.34 545.20 728.47 496.64

MAPE  
(%) 

13 9 7 17 12 10 7

R2 0.78 0.77 0.74 0.81 0.82 0.83 0.86

AR 
model 
  

MAE  
(in ML) 

403.18 590.65 805.35 883.20 1118.39 1627.54 1476.68

MAPE  
(%) 

13 21 32 39 43 50 51

R2 0.92 0.81 0.59 0.46 0.29 0.21 0.10

ARMA 
model 
  

MAE  
(in ML) 

441.28 581.90 811.09 931.90 1074.00 1551.15 1355.73

MAPE  
(%) 

14 21 31 37 40 47 47

R2 0.90 0.79 0.51 0.40 0.23 0.25 0.11
ARMX 
model 

MAE  
(in ML) 

433.25 572.19 806.11 922.19 1066.50 1541.45 1349.87

MAPE  
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13 20 31 36 39 46 47

R2 0.90 0.79 0.52 0.41 0.24 0.25 0.12
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a) for selected events during 2005-2006 

 
b) for selected events in 2010 

 
Figure 3: A statistical comparison of streamflow forecasts at Bandiana by the Murray river operator 
compared to the RR model with LAPS and ACCESS-R QPF  

 
Although the performance of NWP models in QPF has been improving over time (BoM, 2010), consistent 
performance for different seasons and weather systems is still a major challenge due to the enormous 
variability in space and time of the variables (Golding, 2000). According to Demeritt et al. (2007), NWP 
ensemble prediction systems exhibit greater forecast skill than any single NWP model control run or 
deterministic model run; ensembles increase forecast accuracy and allow for better accuracy in predictions at 
longer lead-times. 

6. CONCLUSIONS 

The paper presented the outcomes from a study conducted using the Source IMS to undertake a comparative 
evaluation of streamflow forecasts of up to 7 days using RR models and three TS based linear models at 
Kiewa and Ovens basins in the upper Murray River system. The results were compared with the actual 
forecasts made by the Murray river operator and the observed flow data. The TS models have provided 
reasonably good forecasts up to day 2, however, their performance was not reliable beyond that. The river 
operator forecasts were reliable up to day 3. The reliability reduces significantly beyond that. The study has 
demonstrated that a well calibrated RR model can provide accurate forecasts when using high quality 
quantitative precipitation forecasts. While the forecasts by the RR model with QPF from LAPS and 
ACCESS-R are promising, the uncertainty is still significant. It should be possible to further improve the 
forecasts by using NWP ensemble prediction systems with dynamic calibration of the RR models.  
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