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Abstract: Remotely sensed data are widely used for estimating hydrological variables, such as land 
surface soil moisture, land surface evapotranspiration and catchment runoff because they provide temporally 
dynamic and spatially explicit information on land surface characteristics. Passive microwave observations 
have been used to infer surface soil moisture information because they are not affected by cloud cover and 
there is a physical relationship relating emissions to soil water. Remote sensing vegetation cover types and 
leaf area index time series data have been used as inputs into distributed, semi-distributed and lumped 
hydrological models (Liu et al., 2007). 

This paper investigates the potential to improve runoff, soil moisture and vegetation dynamics predictions in 
ungauged catchments using a land surface hydrological model, AWRA-L, together with remotely sensed leaf 
area index measurements from NOAA-AVHRR and surface soil moisture measurements from TRMM-TMI. 
The study is conducted in 579 unregulated catchments across Australia. The AWRA-L model was regionally 
calibrated (i.e. a single set of parameters optimised) for half the catchments in four experiments: (1) against 
daily recorded streamflow data (Exp1); (2) against daily recorded streamflow together with monthly NOAA-
AVHRR leaf area index data (Exp2); (3) against daily recorded streamflow together with daily TRMM-TMI 
soil moisture data (Exp3); and (4) against all three data sets (Exp4). Next, the four optimised parameter sets 
obtained from the four regional calibration schemes were applied to the remaining half of the catchments for 
validation to evaluate the modelling skills for daily runoff and soil moisture predictions in independent 
catchments. This validation gives an indication of the abilities of the different calibration schemes to provide 
predictions in ungauged or poorly gauged catchments.  

The results here show that (1) it is technically feasible (i.e. use of advanced scientific computing, such as  
CSIRO GPU cluster) to use regional model calibration for hydrological modelling for continental Australia; 
(2) the incorporation of remotely sensed data into the calibration objective function marginally improves the 
daily runoff estimates, but noticeably improves the leaf area index and soil moisture estimates in the 
validation catchments; (3) the biggest benefit comes from Exp4 calibrating against recorded runoff and 
remotely sensed leaf area index and soil moisture observations. This study is being extended to investigate 
regional calibration over hydroclimate regions (rather than across the whole of Australia) and in a gridded 
modelling application to better use the spatial remotely sensed data and to represent rainfall gradients within 
catchments. It is likely that this, together with adaptation of surface hydrological models to make better use 
of remotely sensed data, will improve runoff estimates across large regions and the impact of climate and 
land use changes on runoff. 

It is noted that the global optimiser, the genetic algorithm toolbox built in MATLAB® did not found global 
optimum for the regional model calibration scheme one. Nevertheless, this should not noticeably impact the 
comparison results between the four regional calibration schemes in the validation catchments.  This is an 
ongoing study. It needs to re-configure the optimiser to for obtaining better regional model calibrations.   
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1. INTRODUCTION 

Remotely sensed (RS) data are widely used for estimating hydrological processes, such as land surface soil 
moisture, land surface evapotranspiration and catchment runoff because they provide temporally dynamic 
and spatially explicit information on land surface characteristics. Among them, passive microwave 
observations have been widely used to detect surface soil moisture (SM) because they are not affected by 
cloud cover and there is a physical relationship relating emissions to water amounts in the environment. The 
Microwave Instrument (TMI) on board NASA’s Tropical Rainfall Measuring Mission (TRMM) has provided 
operational passive microwave measurements, which have been successfully used to monitor drought in 
eastern Australia between 1998 and 2005 (Liu et al., 2007). Liu et al. (2007) found that TRMM-TMI 
satellite-observed soil moisture and vegetation density show strong correlation with El Niño in eastern 
Australia. Liu et al. (2009) further analysed spatial-temporal variations of SM over mainland Australia by 
using passive microwave observations by four satellites. Remote sensing vegetation cover types and leaf area 
index time series data have been used as inputs into distributed, semi-distributed and lumped hydrological 
models (Zhang and Chiew et al., 2009; Zhang et al., 2009). Zhang et al. (2009) used remotely sensed 
evapotranspiration estimates together with recorded streamflow to constrain rainfall-runoff model calibration 
and then used optimised parameter sets for runoff predictions. They found that the use of remotely sensed 
evapotranspiration data in calibration leads to improved daily or monthly runoff predictions in ungauged 
catchments (PUB).  

Several studies have used regional model calibration for improving runoff estimates for ungauged catchments 
(Parajka et al., 2007). Regional model calibration is defined here as model calibration simultaneously against 
observations in multiple catchments (from dozens to hundreds) across a wide region to obtain a single 
parameter set for all catchments. In contrast, local model calibration is referred as the calibration against 
observations in a single catchment. The main benefit of regional model calibration is that one set of 
optimised parameter values is obtained (or perhaps several sets if different objective functions are considered 
or if a research region is divided into different sub regions) which can be used for improving hydrological 
and vegetation estimates at the regional scale. The major advantage of local model calibration is that an 
optimum parameter set can be obtained for each individual catchment, and will match the local data most 
accurately. However, the locally optimised parameter values are not always suitable for PUB because 
gauging stations can be few and far apart, in which case the underlying assumption that nearby catchments 
have similar responses can be problematic. Furthermore, observational errors (e.g. in streamflow gauging and 
rainfall inputs) can cause the local calibration to be biased, with biased model parameters being regionalized.  

This paper investigates whether the inclusion of TRMM-TMI SM (SMRS) and NOAA-AVHRR leaf area 
index (LRS) data into four regional model calibration schemes for a land surface hydrology model, AWRA-L, 
can improve hydrological and vegetation estimates for continental Australia. Section 2.3 introduces the four 
regional calibration schemes in detail. Each scheme uses half of a large catchment dataset for the AWRA-L 
model calibration and uses the remaining half for model cross-validation. Data from 579 relatively 
unregulated catchments across continental Australia are used for this study (Figure 1). 

2. METHODS AND DATA  

2.1. AWRA-L model 

The AWRA Landscape model (AWRA-L version 0.5; Van Dijk, 2010) is a grid-distributed biophysical 
model, developed to simulate water stores and flows in the vegetation, soil and local catchment groundwater 
systems. Model inputs include daily minimum temperature, maximum temperature, solar radiation, 
precipitation; model outputs include runoff, soil moisture at three soil layers (top, shallow and deep soils), 
surface evaporation and vegetation transpiration. 

2.2. Data 

Input climate data: Daily time series of maximum temperature, minimum temperature, incoming solar 
radiation and precipitation from 1980 to 2008 at 0.05o × 0.05o (~ 5 km × 5 km) grid cells from the SILO Data 
Drill of the Queensland Department of Natural Resources and Water (www.nrw.gov.au/silo) are used. The 
SILO Data Drill provides surfaces of daily rainfall and other climate data interpolated from point 
measurements made by the Australian Bureau of Meteorology. 

Streamflow: Daily streamflow data for the 579 unregulated and not nested catchments (50 to 5000 km2) come 
from state water agencies. The streamflow data used here are quality controlled (Zhang et al., 2011). 
Streamlfow data from 1981 to 2008 are used in this study.  
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Soil moisture: Daily time series of TRMM-TMI top soil moisture content data from 2000 to 2008 at 0.25o × 
0.25o (~ 25 km × 25 km) are used (Liu et al., 2009). The data were retrieved using the land parameter retrial 
model and X-band brightness temperature. The retrieved soil moisture represents an estimate of the moisture 
content of roughly the top 2-5 centimetres of soil.  

LAI: Monthly time series of NOAA-AVHRR leaf area index data at ~8-km resolution from 1981 to 2006 
(Ganguly et al., 2008) obtained from Boston University are used in Exp2 and Exp4 to constrain model 
calibration.  

For each of the 579 catchments, all gridded data were arithmetically averaged to obtain catchment aggregated 
values at each daily time step (monthly in the case of LAI). The aggregated daily meteorological data 
together with daily observed runoff, aggregated monthly LRS and aggregated daily SMRS data are input into 
the AWRA-L model for model calibration and validation.   

2.3. Model calibration and validation 

A global optimisation method, the genetic algorithm, is used to optimise 28 parameters (20 hydrological 
response unit parameters and 8 univeral parameters) in the AWRA-L model. Out of the 579 catchments, 290 
catchments are randomly selected for model calibration and the rest 289 catchments are used for model cross-
validation (Figure 1). 

Four experiments for model calibration are conducted. The experiment 1 calibrates AWRAL-L against runoff 
only (taken as a benchmark), while the other three calibrate the model against runoff and remote sensing leaf 
area index and soil moisture observations. The simulation period is from 1 January 1980 to 31 December 
2008, with the first year (1980) used for model warm-
up and the rest (1981–2008) for model calibration and 
evaluation. The experiments 1-4 are thereafter 
labelled as Exp1, Exp2, Exp3 and Exp4. They are 
given by 

• Exp1: the benchmark experiment, model 
calibration against daily recorded runoff (Q) 
(1981-2008);  

• Exp2: model calibration against daily recorded Q 
(1981-2008) and monthly NOAA-AVHRR LRS 
data (1981-2006); 

• Exp3: Model calibration against daily recorded Q 
(1981-2008) and daily TRMM-TMI SMRS data 
(2000-2008); 

• Exp4: Model calibration against daily recorded Q 
(1981-2008), monthly NOAA-AVHRR LRS 
(1981-2006) and daily TRMM-TMI SMRS data 
(2000-2008). 

The four optimised parameter sets obtained from the 
four regional calibration experiments are then applied to the remaining 289 catchments (Figure 1) and 
predictions are evaluated for the same period as calibrations. These validation results can be used to evaluate 
the skill of each parameter set in predicting hydrological and vegetation dynamics in ungauged catchments.   

Two steps are carried out for each regional calibration scheme.  First, in each calibration catchment the 
AWRA-L model is calibrated against observations by minimising an objective function (F) (Eqs. (2) – (6)). 
Then, a composite summary or ‘grand’ objective function (Fg) is calculated by considering percentiles from 
the 290 objective function values: 

1% 25% 50% 75%gF F F F F= + + +                                                               (1) 

where F1%, F25%, F50% and F75% are the 1st, 25th, median and 75th percentiles of the objective function values, 
respectively. With a higher percentile (i.e., a higher F value), a catchment has poorer simulated runoff results. 
The calibration process then optimises the model parameters to minimise Fg. The 90th is not used in Eq. (1) 
because F values for over 90th catchments are 1-2 orders of magnitude higher than those for lower percentile 
catchments. Thus, using 90th puts poorly calibrated catchments much more weight than well calibrated 

Figure 1. Spatial coverage of 579 unregulated 
catchments across Australia, including 290 
calibration catchments and 289 validation 

catchments. 

3450



Zhang et al., Improving hydrological and vegetation modelling using regional model calibration… 

catchments. The regional calibration requires high amount of calculation resource. As such, 280 processers 
(2.8GHz compute cores) the CSIRO GPU cluster are used for parallel computation in regional model 
calibration. 

The objective function calculated for each calibration catchment is introduced below.   

2.3.1. Exp1 – benchmark calibration against runoff 

In Exp1, the objective function (F1) for a single catchment depends on the 1- NSE (Nash-Sutcliffe Efficiency) 
and a logarithmic function of bias (Viney et al., 2009) and is given by 

 
2.5

1 (1 ) 5 ln(1 )F NSE B= − + +                                                                                 (2) 

where B is the bias, defined as the total model error divided by total observed runoff. NSE measures the 
agreement between the modelled and observed daily values, with NSE = 1.0 indicating perfect agreement 
between the modelled and observed daily runoff at a given catchment.     

2.3.2. Exp2 – calibration against runoff and leaf area index 

In Exp2, the AWRA-L model is calibrated against recorded daily runoff and monthly LRS. The objective 
function (F2) for a single catchment is given as 

                     
2.5 2

2 (1 ) 5 ln(1 ) (1 )LF NSE B R= − + + + −                                                        (3) 

where R2
L is the coefficient of determination in the monthly simulated and remotely sensed LRS. R2

L was used 
for leaf area index instead of the NSE because although the simulated and remotely sensed leaf area index 
may not have the exact same definition and hence the same values, they should be strongly correlated (Zhang 
et al., 2009).   

2.3.3. Exp3 – calibration against runoff and soil moisture 

In Exp3, the AWRA-L model is calibrated against recorded daily runoff and daily SMRS. The objective 
function (F3) for a single catchment is given as 

                     
2.5 2

3 (1 ) 5 ln(1 ) (1 )SMF NSE B R= − + + + −                                                     (4) 

where R2
SM is the coefficient of determination in the simulated daily top-layer soil moisture and SMRS. 

2.3.4. Exp4 – calibration against runoff, leaf area index and soil moisture 

In Exp4, the AWRA-L model is calibrated against recorded daily runoff, monthly LRS and daily SMRS. The 
objective function (F4) for a single catchment is given as 

2.5 2 2
4 (1 ) 5 ln(1 ) (1 ) (1 )L SMF NSE B R R= − + + + − + −                                                 (5)   

3. RESULTS AND DISCUSSION 

Table 1 summarises model calibration and validation results for the four modelling experiments, 10th, 25th, 
median, 75th, and 90th percentile daily runoff NSE, absolute water balance error (WBE), monthly leaf area 
index coefficient of determination R2

L and daily soil moisture coefficient of determination (R2
SM).    

3.1. Calibration results for runoff 

Regarding the NSE calibration results, at the 10th percentile and below, the benchmark experiment Exp1 is 
the best (with highest NSE values). Above the 25th percentile, Exp4 is slightly better than other three 
experiments. The model calibrations obtain similar WBE for the four experiments. The Fg value for runoff 
(Eqs. (1) and (2)) for Exp1 is almost as same (0.61) as that for Exp4, but slightly lower than 0.64 for Exp2  
and Exp3. These results suggest that Exp1 and Exp4 show the overall similar performance in runoff 
calibrations. The differences between the four experiments, however, are marginal. 

These calibration results at the 290 catchments are noticeably poorer than those obtained from traditional 
rainfall-runoff models, such as GR4J model which is locally calibrated using F1 (Eq. (2)). The median NSE 
of daily runoff for the four experiments for AWRA-L is about 0.17-0.21 poorer than that for GR4J and the 
median WBE for AWRA-L is 0.40 poorer (higher) than those for GR4J. It is noted that the traditional 
rainfall-runoff models are calibrated for individual catchments, i.e., one set of optimised parameter values for 
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each catchment. In this study the AWRA-L model is regionally calibrated, i.e., one set of optimised 
parameter values for all the 290 calibration catchments.   

Table 1. Statistical summary of model calibration and prediction results  
for four modelling experiments for AWRA-L and GR4J 

 
Evaluation 

criteria 

modelling  

experiments 

Calibration 

variables

Calibration (percentile) Prediction (percentile) 
10 25 50 75 90 10 25 50 75 90 

NSE 

Exp1 Q 0.06 0.27 0.44 0.56 0.65 0.14 0.27 0.40 0.54 0.64

Exp2 Q + LRS -0.08 0.28 0.45 0.56 0.64 0.13 0.29 0.42 0.55 0.64

Exp3 Q + SMRS 0.01 0.27 0.42 0.56 0.63 0.11 0.26 0.40 0.53 0.64

Exp4 Q + SMRS + LRS -0.04 0.27 0.46 0.57 0.66 0.12 0.27 0.44 0.56 0.66

GR4J Q 0.34 0.51 0.63 0.72 0.79 0.04 0.27 0.46 0.61 0.72

WBE 

Exp1 Q 5.2 12.8 24.7 43.1 76.6 5.1 12.1 27.0 47.7 80.0

Exp2 Q + LRS 5.4 14.5 25.8 45.3 89.1 5.8 12.5 24.4 50.7 88.6

Exp3 Q + SMRS 4.9 13.2 25.7 43.1 87.5 6.2 12.4 27.1 49.4 92.3

Exp4 Q + SMRS + LRS 6.2 13.1 24.3 43.8 74.1 5.5 12.9 26.9 50.2 86.2

GR4J Q 0.77 1.6 3.0 4.8 6.3 3.9 10.9 23.5 45.0 76.2

R2
L 

Exp1 Q 0.00 0.02 0.07 0.22 0.39 0.00 0.01 0.06 0.19 0.33 

Exp2 Q + LRS 0.00 0.02 0.17 0.41 0.60 0.00 0.02 0.14 0.40 0.57 

Exp3 Q + SMRS 0.00 0.02 0.06 0.17 0.29 0.00 0.01 0.05 0.14 0.24 

Exp4 Q + SMRS + LRS 0.00 0.02 0.11 0.37 0.55 0.00 0.01 0.08 0.29 0.49 

R2
SM 

Exp1 Q 0.03 0.13 0.36 0.55 0.67 0.05 0.17 0.37 0.56 0.65

Exp2 Q + LRS 0.03 0.14 0.33 0.49 0.59 0.05 0.15 0.32 0.49 0.58

Exp3 Q + SMRS 0.03 0.13 0.36 0.56 0.67 0.05 0.17 0.36 0.56 0.65

Exp4 Q + SMRS + LRS 0.04 0.16 0.41 0.59 0.70 0.06 0.20 0.38 0.61 0.68

3.2. Calibration results for leaf area index and soil moisture  

For LAI, it is clear that Exp2 calibrating against Q and LRS performs best in modelling leaf area index time 
series (according to R2

L) and Exp4 calibrating against Q, LRS and SMRS is the second best. For soil moisture, 
Exp4 calibrating against runoff, LRS and SMRS is the best, in terms of highest R2

SM values. Exp3 calibrating 
against runoff and SMRS is similar to Exp1 calibrating against runoff only, while Exp2 is the worst. 

These calibration results for leaf area index and soil moisture suggest that that soil moisture has less weight 
than leaf area index in the objective functions (Eqs. (3)-(5)). This is because R2

SM is noticeably higher than 
R2

L at the same percentile. For instance, the median R2
SM is about 0.2-0.3 higher than the median R2

L. This 
automatically puts more weight on leaf area index when minimising the objective functions. However, this 
means that there is greater potential for improvements in R2

L because of its greater spread of values at each 
percentile. 

3.3. Predictions of daily runoff   

Figures 2 and 3 and Table 1 summarise model validation (or prediction) results of daily runoff for the four 
modelling experiments. Significantly, for all experiments, model validation results are very similar to model 
calibration results, i.e. no significant degradation from calibration to prediction (as is typically the case with 
nearest neighbour regionalization). Another striking aspect is that at the 10th percentile NSE of daily runoff 
for validation is about 0.08-0.21 higher than that for calibration (Table 1). The comparison of prediction 
results for the four experiments indicates that the NSE and WBE accumulation curves are marginally 
different between the alternative modelling experiments.  

The prediction results shown here are comparable to, but poorer than, those obtained by GR4J model. Figures 
2 and 3 compare between AWRA-L results to those obtained by using a widely used regionalisation 
approach, nearest neighbor approach, and GR4J model for the 289 prediction catchments. For the percentiles 
over the 25th, NSE of daily runoff for GR4J are about 0.02-0.1higher than those for AWRA-L while for the 
percentiles below 25th, the NSE of daily runoff for AWRA-L is about 0.05-0.1 higher than those for GR4J. 
The WBE accumulative curve comparisons show that GR4J got marginally better WBE results (about 0.03 
higher) than the four experiments for AWRA-L. It is noted that there is a noticeable degradation from 
calibration and prediction for GR4J, but not for AWRA-L. 
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3.4. Predictions of monthly leaf area index   

Figure 4 and Table 1 summarise model 
prediction results of monthly leaf area index 
for the four modelling experiments. For each 
experiment, model prediction results are 
slightly degraded from model calibration 
results. The comparison between the four 
experiments for model validation shows very 
similar results to that for model calibration. 
Exp2 calibrating against Q and LRS is the best 
in predicting monthly leaf area and Exp 4 
calibrating against Q, LRS and SMRS is slightly 
worse than Exp2, but much outperforms Exp1 
and Exp3. 

3.5. Predictions of daily soil moisture    

Figure 5 and Table 1 summarise model 
prediction results of daily surface soil moisture 
for the four modelling experiments. The results 
of R2

SM are not appreciably degraded from 
calibration to validation for each experiment. 
Exp4 calibrating against all three variables 
(Q, LRS and SMRS) shows the best estimates 
of surface daily soil moisture; Exp3 
calibrating against Q and SMRS is similar to 
Exp1 calibrating against Q only; Exp2 
calibrating against Q and LRS performs worst. 
It is noted that the difference between the 
experiments for predicting daily soil moisture 
is smaller than that for predicting monthly 
leaf area index. It, however, is larger than the 
difference between the experiments for 
predicting runoff. 

 

 

Figure 5. Summary of predicted R2 of daily soil  
 moisture for the four modelling experiments. Large R2

SM  
 values indicate a good model performance. 

 

Figure 2. Summary of predicted NSE of daily runoff for the 
four modelling experiments. Large NSE values indicate a 

good model performance. 

 

Figure 4. Summary of predicted R2 of leaf area index for   
the four modelling experiments. Large R2

L values  
indicate a good model performance. 

 

Figure 3. Summary of predicted WBE percentage for  
the four modelling experiments. Small WBE values  

indicate a good model performance. 
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The predictions of daily runoff, monthly leaf area index and daily soil moisture suggest that incorporation of 
remote sensing leaf area index and soil moisture into hydrological model calibration can improve model 
general performance in simulating hydrological and vegetation process, compared to the benchmark 
calibration against recorded daily runoff only. The biggest benefit found in this study is from Exp4 
calibrating against Q, LRS and SMRS observations. 

4. CONCLUSIONS 

This study investigates the potential to incorporate remote sensing leaf area index and soil moisture data into 
four regional model calibration schemes for improving hydrological and vegetation dynamic estimates for 
continental Australia. The calibration and predictions result show that (1) it is technically feasible (i.e. use of 
advanced scientific computing, such as  CSIRO GPU cluster) to use regional model calibration into 
hydrological modelling at a continental scale; (2) the incorporation of remotely sensed data into the 
calibration objective function only very marginally improves the daily runoff estimates, but noticeably 
improves the leaf area index and soil moisture estimates in ungauged catchments; (3) the biggest benefit 
comes from model calibration against recorded runoff, remotely sensed leaf area index and soil moisture 
observations.  

This is a first attempt, in our knowledge, to use remotely sensed leaf area index and microwave soil moisture 
data together with runoff data for regional model calibration and prediction. More work needs to be done on 
how to effectively incorporate gridded remote sensing leaf area index and soil moisture measurements into 
hydrological models.  Furthermore, the global optimiser, the genetic algorithm toolbox built in MATLAB® 
did not found the global optimum for the regional model calibration scheme one. It needs to re-configure the 
optimiser to for obtaining better regional model calibrations. 
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