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Abstract: Some of the major concerns regarding sewer overflows to receiving water bodies include 
serious environmental, aesthetic and public health problems. Water management authorities are increasingly 
receiving public complaints that have led engineers to focus on means of retaining the entrained sewer solids 
within the sewer system during overflow events. During wet weather conditions, sewer overflows to 
receiving water bodies raise serious concern to environmental and community health concerns. To address 
these problems, different types of screening devices are used. Moreover, floatable control is preferred by 
most of the proposed and existing environmental regulations. This requirement triggers the need to research 
the different types of screening devices and screenings handling systems to select the most appropriate for a 
particular installation especially at unmanned locations.  

In the present study the sewer overflow device consists of a rectangular tank and a sharp crested weir that are 
followed by series of vertical parallel combs to separate entrained sewer solids from the overflow. The device 
does not require electrical or mechanical power for the self-cleansing mechanism, enabling the device to 
work efficiently in unmanned locations. Extensive laboratory investigations are underway to assess the 
effectiveness of a novel self-cleansing sewer overflow screening device. A series of laboratory tests to 
determine trapping efficiencies for common sewer solids were conducted for different flow conditions, 
number of combs layers, spacing of combs and weir crest lengths.  

Sewer solids from different density materials make sewer flow to analyze in complex Non-Newtonian fluid 
system with huge computational cost and complicity using physical law based modeling. On the flipside 
artificial neural model has the capacity to accurately predict the outcome of complex, non-linear physical 
systems with relatively poorly understood physicochemical processes which makes them highly desirable in 
the present study. Artificial Neural Networks (ANN) have already been successfully used to simulate flood 
forecasting in urban drainage system, real time control in combined sewer system, real time water level 
predictions of sewerage systems covering gauged and un-gauged sites etc.  

In case of sewer solid capture efficiency: neural network modeling is able to recognize nonlinear input output 
relations with adapting approach for changing circumstances. In the present study, feed forward artificial 
neural networks using back propagation algorithms were used, as such networks have been used almost 
exclusively in environmental modeling. A series of forty seven (47) sets of experimental data were collected 
to train (calibrate) the ANN model. In addition to these, eight (8) sets of experimental data were collected to 
validate the trained ANN network to be used in wider prospective of urban drainage conditions.  

The major areas covered in the ANN modeling include selection of input and output variables, optimization 
of the model, consideration of different learning algorithms, designing ANN’s training & cross training 
processes and model validation. In the studied case, complex physical characteristics of different sewer 
solids, together with multi-fluid sewer system with variable flow phenomena makes it difficult to model with 
physical considerations. In case of sewer solid capture efficiency; artificial neural network modeling is able 
to learn the complex input-output relations with adapting approach for changing circumstances. Model 
considered different learning algorithms, diverse hidden layer structure with varied training samples to 
optimize the network. It is found that the model can successfully predict the experimental results with 
average absolute percentage errors varying from 4 to 7 percent. 
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1. INTRODUCTION 

Under wet weather conditions, sewer overflows cause serious concern to the environment, aesthetic and 
public health when present in receiving water bodies. To overcome these problems different types of 
screening devices are used. Screening is a process that is most desirably confined and automated in order to 
ensure operational safety and to satisfy aesthetic issues. Moreover, floatable control is preferred by most 
proposed and existing environment regulations. This requirement triggers the need for research in the 
construction of numerous screening handling systems in actual environments, especially at unmanned 
locations where minimum maintenance is available. With the advent of powerful computing facilities over 
the last couple of decades, computer models have been extremely useful in devising and assessing the various 
engineering and operational strategies for managing water quality and quantity. In the case studied, ANN 
models were suitable considering mixing of different solids in the sewer system which leads to different 
viscosity fluid flow conditions. Moreover, the nonlinear relationship between input and output variables, and 
complex physicochemical interaction leads to difficulties in formulating mathematical model based on 
physical laws.  

There are a number of different screening systems used in sewer overflow screening devices. One of these is 
the rotary screen (Moffa, 1997), consisting of a large rotating drum; slightly angled to maximize dewatering. 
The angle of the drum ensures effective dewatering once the screenings travel up the drum before reaching 
the end of the drum, at which point the screenings are removed from the unit. Metcalf et al. (1991) proposed 
a centrifugal screen, having a series of screens attached to a cage, which rotates around a vertical axis. Flow 
enters the inside from the bottom and flows upward to a deflection plate at the top of the unit which can be 
collected from outside the cage. Other types include disc type plates, oriented perpendicular to the flow and 
surrounded with screening media, that rotate about a horizontal axis. The solids are retained by the screening 
media after the influent enters the submerged portion of the disc. A cleansing brush mechanism known as the 
brush raked fine screen is mounted on a drive shaft that slowly rotates in a 360 degree circle. In addition to 
these, Moffa(1997) used an inclined static screen that acts as a sieve to remove solids from the liquid stream. 
An overflow sewer device weir screen acts as a barrier to retain floatable and other solids and the rotating 
weir screen is cleaned by a rotating brush that is powered by the energy of water flowing over a water wheel 
or by an electric motor. Simon et al. (2008) proposed a sewer overflow screening device with temporary 
holding tanks, which provide transient storage and real time control of sewer systems. Although the device 
was self cleansing, the cleansing mechanism had some limitations which needed to be improved. 

Some of the common drawbacks in the available commercial devices include inadequate screening capacity, 
external power needs and high cost. To overcome such drawbacks a new overflow sewer device, known as 
the Comb Separator, was proposed by Donald Phillips (Phillips et al., 2010). The device has no moving parts, 
a robust stop/start operation, an effective self cleansing mechanism, low maintenance and operation costs and 
no external power requirements. World-wide patents for the device have been applied for and licenses issued 
for its manufacture and marketing. 

In the present study, the sewer overflow device consists of a rectangular tank and a sharp crested weir that are 
followed by series of vertical parallel combs to separate entrained sewer solids from the overflow. The device 
does not require electrical or mechanical power for the self-cleansing mechanism, enabling the device to 
work efficiently in unmanned locations. In addition, it has no moving parts and has robust stop/start operation 
and low maintenance. The performance of the device is based on its sewer solids capture efficiency. A series 
of laboratory tests conducted at Swinburne University of Technology used a range of experimental conditions 
to simulate conditions in existing urban sewerage systems. These included different overflow, or spill rates, 
for different numbers of combs layers, spacing of combs and weir crest lengths. The experimental work 
although showing promise as a sewer solids separation device, was restricted by the physical limitations 
inherent in laboratory studies. In addition, experimental work involves significant cost and time. To 
overcome such problems experimental results were analyzed and used to train an ANN model that had 
already been used successfully in similar kinds of environmental problems like water level predictions, flood 
forecasting and control in combined sewers (Chiang et al., 2010, Bruen et al., 2006 and Weyand, 2002).   

Willems et al. (1999) demonstrated a number of uncertainties involved in the modeling of a sewer system. In 
particular, model simplifications of the physical system make it difficult to adopt a deterministic approach. In 
the studied problem, the system difficult to model: (i) physical characteristics of different sewer particles; (ii) 
multi-fluid sewer system with changing velocity due to different viscosity of fluid (as Non-Newtonian fluid); 
and (iii) interaction between liquid and solid particles. On the other hand, the main benefit of adapting ANNs 
are that they can effectively extract significant features and trends from complex systems even if the 
underlying physics is either unknown or difficult to recognize (Chiang et al., 2010). Furthermore, ANNs 
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greatly reduce the computational time and cost (Raduly et al., 2007). In addition to these, once the network is 
trained it reduces computation cost and time unless completely new sets of experimental conditions are used 
which could be greatly enhancing industrial applicability. Saving in computational cost, time and predict 
complex input output relations without much understanding of physicochemical system could make an 
artificial neural network (ANN) model the obvious choice in a wide range of urban drainage systems. 

In the case of sewer solid capture efficiency, the neural network modeling is able to learn the existing 
nonlinear input- output relationships. In this work, a multi-layer feed forward artificial neural network, using 
back propagation algorithm, were used. Such networks have been used almost exclusively in environmental 
modeling (Maier et al., 2001). A series of forty seven (47) sets of experimental data were collected to train 
the ANN model. In addition to these, eight (8) sets of experimental data were collected to validate the trained 
ANN models. They are to be used in wider perspective of urban drainage conditions.  

2. SCREENING MECHANISM 

The proposed overflow sewer device is installed within existing sewer overflow chambers. The sewerage 
overflow device is connected to a pump and inlet pipe, two outlets are mounted on the device one to convey 
away overflow water whereas the other drains the sewer water remaining in the storage chamber.  A series of 
combs to segregate sewer solids from the sewer overflow are mounted next to the sharp crested weir as 
shown in figure 1 below. 

After the start of precipitation the storage chamber 
fills with sewerage. A floating valve at the bottom 
of the sewer solids holding chamber then closes at 
this point as shown in figure 1. As the downpour 
continues the storage chamber overflows the sharp 
crested weir and the entrained sewer solids are 
intercepted by the parallel combs and fall into the 
holding chamber (pollutant capture chamber) refer 
to figure 1. After cessation of the down pour the 
storage chamber falls below the valve level.  

The pressure of the water in the sewer solids 
holding chamber opens the valve and flushes the 
entire captured sewer solids back into the storage 
chamber refer to figure 2. Common sewer solids 
like condoms, tampons, cigarette buds, wrap 
papers, bottle caps were tested. The experimental 
conditions varied with different flow conditions, 
number and spacing of combs layers. The 
laboratory device gave very high capture rates varying 
from 90% to 95% percent with the exception of 
cigarette butts.  

3. ARTIFICIAL NEURAL NETWORK 
MODELING 

The Artificial Neural Network (ANN) is highly 
inspired by biological neural networks and has the 
unique ability to learn and generalize “knowledge”. 
ANNs are a non-linear data modeling tool used to 
model complex relationships between inputs and 
outputs without any prior assumptions or any available 
mathematical relation between them. ANNs comprise a 
group of interconnected artificial neurons, which are 
the simple and fundamental processing units. Each 
artificial neuron (Figure 3) is basically a computing 
processor, where the output yk is a function of the 
weighed sum of the inputs eqn. (1).  Where, x1,x2,…,xp 
are the input signals; wk1, wk2,…, wkp are the assigned 
weights; θk is the threshold value and ϕ is the transfer function . 

 Figure 1.Operation procedure of the new Overflow 
Sewerage Device. 

 

Figure 2.Operation procedure of the new Overflow 
Sewerage Device. 
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Artificial Neural Networks have already been 
successfully used to simulate flood forecasting in 
urban drainage system (Bruen et al,2006), real time 
control in combined sewer systems in Germany 
(Weyand et al,2002), real time water level 
predictions of sewerage systems covering gauged 
and ungauged sites (Chiang et al, 2010). As ANNs 
have been successfully applied to similar nature of 
water quality applications (Maier et al, 1996) it is 
also used in the current study. 

The major areas covered in ANN modeling include selection of input and output variables, optimization of 
the model, consideration of different learning algorithms in building and training networks and finally model 
validation (Maier et al, 2001).  

3.1. Selection of input-output variables 

Like most environmental modeling approaches, some of the key steps in ANN modeling include database 
collection (from experimental results), pre-possessing the data (normalize experimental data) and assessing 
the output. A robust and sufficiently large database is essential to construct a network that generalizes well. 
Moreover, a clear understanding of the hydraulic process is required for successful modeling of this nature. 
For instance, physical insight into the problem being studied can lead to better choices of input variables for 
proper mapping (ASCE, 2000). This will lead to effective and efficient modeling, avoiding loss of 
information due to inappropriate choice of input parameters. In the present study 47 sets of experimental data 
showed that 16 input parameters influenced the pollutant capture efficiency (output).While carrying out the 
experiment, one parameter was varied each time, while the others were kept constant to their reference 
values. This allows us to examine how each parameter affected the output pollutant capture efficiency. 

3.2. Model Design and Network Optimization 

A model considering Multi-Layer Perceptron 
(MLP), based on the back propagation algorithm, is 
used in this work. The multi-layer ANN architecture 
comprises three main parts: the input layer, the 
output layer and the layer in between termed as the 
hidden layer. The input parameters were selected 
based on the experience on extensive hydraulic 
experimental works on the sewer solid capture 
efficiency. Therefore 16 parameters affecting the 
pollutant capture efficiency were considered for 
inputs, where as pollutant capture efficiency was 
selected as output parameter. The number of 
neurons required to describe each parameter is 
dependent on the parameter nature. A real valued 
parameter requires one neuron to represent the 
value, while x neurons are required to describe 2x 
categories for parameters representing 
classifications. The flexibility lies in selecting the 

number of hidden layers and in assigning the number of neurons to each of these layers. Maren et al (1990) 
suggests using two hidden layers when the outputs need to be continuous functions of the inputs. The block 
diagram of the proposed ANN model is presented in Figure 4. 

An optimal architecture may be considered the one yielding the best performance in terms of output error 
minimization, while retaining a simple and compact structure. The network optimization uses the 
experimental database to fix the number of neurons in the hidden layers as well as optimize the weight 
population to produce minimum output error.  

Figure 3.A typical artificial neuron k. 

 

Figure 4.Block diagram of proposed ANN model

3479



Aziz et al., Artificial Neural Networks for the prediction of the trapping efficiency… 

The training process for ANNs can be considered similar to the idea of calibration that is an integral part of 
most hydrologic modeling studies. The purpose of training is to determine the set of connection weights and 
nodal thresholds that cause the ANN to predict outputs that are sufficiently close to target values (ASCE, 
2000). To avoid the problem of over-fitting and to improve the generalization ability of the trained network, 
the method of cross-validation and early stopping are implemented. The available dataset is divided into three 
parts: the training set, the validation set and the test set. In present study, we used 60% of the data for training 
set and 20% for each of the validation and test sets. The back propagation algorithms initially selected in this 
study are the Levenberg Marquardt and the Resilient Back Propagation.  

The Levenberg-Marquardt algorithm (Hasan et al, 1994) is an approximation to Newton’s method designed 
to reach the second order training speed without computing the Hessian matrix. The approximation of 
Hessian matrix and the error gradient is computed as per Eqs (2) and (3). 

ܪ  =	 ݃  (2)    ܬ்ܬ = 	  (3)    ்݁ܬ

J represents the Jacobian matrix, generated by the first derivatives of the network errors on the training set 
with respect to the network’s weights and biases. This can be calculated using standard back propagation 
technique (Hasan et al, 1994). In Eq. 3 e represents the network errors. 

The Levenberg Marquardt algorithm uses the approximation in calculating the Hessian matrix to update and 
tune the parameters. If zk represents the old parameter value, then the new parameter value is given by Eq. 4. ݖ௞ାଵ = ௞ݖ − ሾܬ்ܬ + μܫሿିଵ(4)   ்݁ܬ 

The Resilient Back Propagation algorithm (Riedmiller et al, 1993) eliminates the harmful effects of the 
magnitudes of the partial derivatives as we use sigmoid transfer functions in compressing an infinite input 
range into a finite output range. These sigmoid functions are characterized by their slopes approaching zero 
as the input gets large. This creates difficulty as the gradient can have a very small magnitude and, therefore, 
cause small changes in the weights and biases, even though the weights and biases are far from their optimal 
values. In resilient back propagation algorithm, only the sign of the derivative can determine the direction of 
weight update.  

The number of neurons in the first and second hidden layer was varied from combination of 5/4 neurons to 
23/22 neurons. Regression analysis was performed between the predicted and experimental pollutant capture 
efficiency values. From the performed regression analysis, it was found that the ANN structure with 5/4 
neurons in the first and second hidden layer respectively, responds well both to Levenberg Marquardt and 
Resilient Back propagation algorithm with high R-value. The regression analysis performed on the training, 

validation and test sets for the ANN with five and 
four neurons in the first and second hidden layer 
respectively and trained with Resilient Back 
propagation algorithm is shown in Figure 6 and 7 
respectively. 

To ensure that the Levenberg Marquardt algorithm 
and the Resilient Backpropagation algorithm are 
the optimal training algorithm for the current 
problem of modeling capture sewer overflow 
efficiency, the network with five and four neurons 
in the first and second hidden layer respectively, is 
trained and simulated with nine different 
algorithms, including the ones the network was 
trained with previously. Figure 8 summarizes the 
regression analysis performed on each of the 
trained networks. 30 different network weight trials 
were given in each steps where different random 
initial weights are used in each trial and best values 
for regression analysis (R) were collected. Both 
Levenberg-Marquardt and Resilient Back 
propagation algorithms revealed the highest 
regression value (R) value of R =0.862. 

Figure 8. Comparison of different training paradigms

Where alphabets A, B, C …in figure 8 represents: A: 
Levenberg-Marquad; B: BFGS Quasi-Newton; C: 
Resilient Backpropagation; D: Scaled Conjugate 
Gradieent; E: Conjugate Gradient with Power/ Beale 
Restarts; F: Fletcher-Powell Conjugate Gradient; G: 
Polak-Ribiere Conjugate Gradient; H: One Step 
Secant; I: Variable Learning Rate Back Propagation. 
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3.3. ANN model validation 

Once an ANN model has been trained successfully, the model validation needs to fairly evaluate it by 
subjecting it to new patterns that it has not seen during training. A new test set is used for this purpose. In the 

studied problem eight new sets of experimental data were 
collected and they were simulated with the trained 
network to obtain the predicted values. The 
generalization performance of a trained network is 
measured on the error it produces on unknown data. The 
smaller is the error, the better the generalization ability of 
the trained network, which means that the network will 
perform better under unknown and unseen environments. 
It was found that the trained ANN successfully predicted 
the new experimental values with error ranges from 4% 
to 7% (Figure 9), which shows that the network was 
trained properly with good generalization ability. 

4. DISCUSSION OF RESULTS 

Our limited understanding of physics with Non-
Newtonian fluids made it quite complicated and time consuming to model the system using a deterministic 
approach. On the flip side of the coin, the empirical knowledge through a series of experiments leads us to 
formulate various assumptions by which to successfully develop the ANN model. The ANN’s powerful 
modeling approach, when trained with input-output data, shows that the model can mimic the underlying 
hydrologic processes that otherwise would be extremely difficult to model. It can also handle noise in the 
input output data quite efficiently without severe loss of accuracy (ASCE, 2000). Moreover the ANN model 
greatly reduces computational time compared with most mathematical models (Radulyet al, 2007). All these 
attributes, along with the nonlinear nature of the activation function, truly enhance the generalization 
capabilities of ANNs in the studied problem. Special attention was given to the generalization of errors 
during test cases with different algorithms which significantly contributed to the ANNs performance in 
predicting experimental pollutant capture efficiency as shown in figure 10.After a significant trial and error 
process, the optimized ANN model was designed and successfully predicted experimental results with mean 
absolute error of around 5% (shown in figure 9). This demonstrates the ability of the model  

To predict sewer solid capture efficiencies of the device under real-world conditions. The results presented in 
this paper confirm that ANNs have high potential in predicting pollutant capture efficiencies of the sewer 
overflow device. For integrated urban waste water system simulations, where repeated training of the ANN is 
not needed, ANN greatly reduces simulation time when compared with deterministic modeling approaches. 

Figure 9.Comparison of experimental values 
and ANN predicted values. 
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5. CONCLUSION 

From experimental data the operational efficiency of a new sewer overflow screening device was proven that 
ensures effective screening and has a self cleansing mechanism and a robust start/stop operation. In order to 
employ it in urban drainage systems, neural network modeling was proposed. The model overcomes some 
common experimental drawbacks such as different scales, structures and the time and cost involved in the 
experimental processes. In order to optimize performance of the model the following issues were given 
consideration.  

• Determination of appropriate model inputs: Due to availability of the experimental apparatus, the 
better understanding of the physical aspects lead to a better choice of the sixteen input variables for 
proper mapping on the output.  

• The choice of adequate network geometry: A model considering multi-layer perception (MLP) on a 
Resilient Back-propagation algorithm having 5 neurons in the 1st hidden layer and 4 neurons in the 
2nd hidden layer was found to be the optimum for the test device. 

• Network behavior during the parameter estimation phase: Sixty percent of the data was used in 
training where as twenty percent of the data was used for the validation and testing phases. 

• Model validation: The ANN model successfully predicted the experimental results with errors 
varying from 4 to 7 percent.  

The model can be used as an integrated approach with the device in the urban sewer system which will 
effectively work to remove sewer solids from overflows from the existing sewer system thus helping to 
improve the water quality and ecology of receiving waters.  
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