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Abstract: The NSW Office of Water, within the Department of Trade and Investment, Regional 
Infrastructure and Services is developing water quality guidelines for regions within New South Wales as 
part of the state’s implementation of the National Water Quality Management Strategy (NWQMS).  The 
new guidelines will be tailored more closely to specific catchments and regions than the current default 
guidelines in NSW, the Australian Water quality Guidelines for Fresh and Marine Waters, National Water 
Quality Management Strategy (ANZECC & ARMCANZ, 2000). They will also be used to inform various 
national and state natural resource management targets. 

Water quality guidelines typically include reference values that indicate what the “best case” water quality 
values are for a region: these reference values are usually derived from reference sites, which have been 
purposefully chosen because they provide the best example of undisturbed conditions within a catchment. 
Reference sites were not available for this project, hence the Office of Water has used a predictive modeling 
approach to underpin the development of water quality guidelines by developing statistical estimates of 
reference condition. The predictive models have drawn on the last 10 years of water quality and in-stream 
flow records, and associated geospatial information from catchments across NSW. The project has 
concentrated on building predictive models for five common water quality variables: turbidity, electrical 
conductivity, water temperature, total nitrogen and total phosphorus. 

Water quality is affected by both natural and anthropogenic factors.  That is, rainfall and any landscape 
features not influenced by human behavior versus all land use types, distance to upstream dams and all 
variables related to vegetation type or cover.  Flow variables were categorised separately because they are 
influenced by both natural and anthropogenic activities.  It is possible that current targets for some sites 
may never be able to be met due to the impact of natural factors.  One of the aims of this research is to 
identify if that is ever possible and, if so, under what conditions.  This research will also assist in 
determining which regions will most benefit by targeted activities to reduce the impact of human behavior 
on waterways. 

An earlier pilot study established that natural and discrete groupings could be formed based on different 
water quality characteristics alone and that sets of geospatial factors associated with a water quality 
monitoring station’s drainage can be used to explain the water quality characteristics of that station.  The 
current research has built on the pilot study, refining quality control procedures and increasing the scope 
and number of monitoring stations, whilst the water quality variables of interest remain as total nitrogen, 
turbidity, total phosphorus, electrical conductivity and water temperature. The range of geospatial variables, 
although fine-tuned, has still remained a significant number, viz. 72. 

This paper will discuss the approach taken to reduce the possible number of geospatial predictors to a 
number acceptable for a robust prediction of a data series, how the time series of each water quality variable 
at each water quality monitoring station was summarised to allow investigation of the impact of the 
geospatial predictor variables, how these predictors were then used to build separate models to predict each 
of the water quality variables at each water quality monitoring station based on the subset of important 
geospatial predictors for the corresponding water quality variable and how the models were validated. The 
resulting predictive models and the estimation of undisturbed water quality values are not discussed in this 
paper, but will be addressed in future publications. 
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1. INTRODUCTION 

The NSW Office of Water, within the Department of Trade and Investment, Regional Infrastructure and 
Services (DTIRIS), is developing new water quality guidelines for New South Wales (NSW) as part of the 
state’s implementation of the National Water Quality Management Strategy (NWQMS).  The new 
guidelines will be tailored more closely to specific catchments and regions than the current default 
guidelines in use within NSW, the Australian Water quality Guidelines for Fresh and Marine Waters, 
National Water Quality Management Strategy (ANZECC & ARMCANZ, 2000). They will also be used to 
inform various national and state natural resource management targets. . 

Water quality guidelines usually incorporate guideline values that management agencies may aspire 
towards or try to maintain. These will often include values that represent undisturbed or “best case” 
conditions and many water management agencies have used data from reference sites for this purpose. 
Reference sites are typically located in areas with minimal disturbance such as catchment reserves and 
national parks, and were chosen a priori to serve as references. Provided that a good deal of care has been 
given to the association of reference sites with appropriate disturbed sites (based on similarity, e.g. the same 
catchment, altitude etc.), they provide a real world benchmark for guideline development. On the Australian 
east coast, both the Queensland and Victorian governments have used reference site data in the 
development of regional water quality guidelines (Qld DERM, 2009; EPA Victoria, 2003). 

Although the NSW Office of Water has maintained water quality monitoring programs at hundreds of sites 
around NSW, it has not collected water quality data from designated reference sites.  In the absence of 
reference site data, the authors have used predictive models as a foundation for estimating water quality 
values under undisturbed conditions, thereby providing statistical – rather than reference site - calculations 
of reference condition.    

The modeling approach developed in this report was based around the assumption that water quality at a 
given site is largely determined by that site’s catchment characteristics, referred to henceforth as geospatial 
predictors. Water quality at any given site will be due to a mix of natural and anthropogenic geospatial 
factors within its catchment. If this assumption holds, then predictive models can be used to estimate 
undisturbed water quality by ‘resetting’ anthropogenic factors to reflect undisturbed values. For example, 
modeled unregulated flow and modeled native vegetation coverage can be input in place of actual flow and 
native vegetation cover. Whilst this approach is clearly ambitious, it nevertheless provides an option for 
estimating reference condition from a large dataset, in the absence of designated reference sites.  

The models drew on water quality and in-stream flow records taken from monitoring sites across NSW and 
the Murray Darling Basin, and associated geospatial information. The project focused on predictive models 

for five common water quality indicators: 
turbidity, electrical conductivity, water 
temperature, total nitrogen and total 
phosphorus and has used a bootstrapping 
approach extensively.  

Bootstrapping was used to assist in 
estimating the number of observations 
required at each station in order to obtain a 
representative estimate of that station’s 
water quality, in reducing the number of 
geospatial predictors to be included in the 
final model and to validate that model for 
each water quality indicator. 

This report discusses the methods used to 
develop the predictive models, with 
particular emphasis on the issue of 
validating regression models with a high 
predictor : sample ratio. The outcomes of 
using the models to predict undisturbed 
values, and the use of that data in 
developing regional water quality 
guidelines, will be discussed in future 
papers.   

Figure 1: Water monitoring stations included in the 
analyses 
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2. DATA 

2.1. Water Quality Indicator Variables 

The NSW Office of Water has maintained water quality records for approximately 1,000 monitoring 
stations across NSW. For the purposes of this study, monitoring data were restricted to the period January 
2000 to August 2010 as this was, firstly, a period during which a large number of stations were operational 
and secondly because it minimized the chance that significant changes in geospatial predictors (e.g. land 
use patterns) could have occurred between the earliest and most recent records. 

Monitoring stations were available from thirteen Catchment Management Authorities, incorporating the 
Murray Darling Basin through to coastal catchments in northern and southern NSW.  In order to be 
included in the study, each monitoring station was required to:  

• be of fixed location; 
• be visited repeatedly for water quality sampling from 1 January 2000; 
• have complete data in terms of all candidate geospatial predictors; 
• have data covering at least 5 years between January 2000 and August 2010; 
• be located alongside or very close to a flow gauge with a record of daily flows that were time- 

matched to the water quality sampling record; 
• meet the minimum number of required observations as estimated in Section 3.1. (Selected stations are 

shown in Figure 1.) 

For regression analysis purposes the total nitrogen, total phosphorus, turbidity and electrical conductivity 
series from each water quality monitoring station were log transformed to the base 10 as is the usual 
approach for these variables in order to stabilize the variance (Snedecor and Cochran (1993). Water 
temperature was not log transformed.  Medians were then calculated for each water quality variable for each 
station. The use of medians is common to water quality guidelines and hence, was the chosen summary 
measure.  Additionally, the median does not differ with scale, meaning that a log-scale median value 
derived from the predictive models will back transform without distortion into a median on the native scale.   

2.2. Water Quality Predictors (Geospatial Variables) 

Water quality predictors were defined as any measurable characteristic of a monitoring station’s drainage or 
location that was considered to have a direct conceptual link to one or more of the water quality variables.  
A total of 73 water quality predictors were investigated and consisted of variables related to: 

• Station easting; northing; altitude; distance to upstream dam; stream order; distance to source; stream 
length;  

• Drainage area; slope; altitude;  
• Stream flow; rainfall (yearly, seasonal); groundwater flow (local, intermediate, regional);  
• Land use (grazing, intensive animal production, cropping/horticulture, mining and quarrying, urban, 

wetlands, tree and shrub cover, native vegetation cover);  
• Land use proximity effects (distance to centroids for intensive animal production, mining and 

quarrying, urban, effluent and sewage);  
• Geological outcrop productivity index (scores of 1 to 5, negligible productivity to high productivity, % 

cover for each class). This index, developed by the NSW Office of Water, rates the weathering 
capacity of rock types according to mineralogy (T. Mount, NSW Office of Water, unpublished data).;  

• Geological outcrop productivity proximity effects (distance to centroids);  
• Electrical conductivity and turbidity  

Predictors were only included if measurements were available for every station in the analysis: because 
some stations had catchments extending into adjacent states (Queensland and Victoria), some desirable GIS 
layers were incomplete or unavailable outside of the NSW state border.  

2.3. Number of observations within the data series at each station 

The number of observations varied considerably between monitoring stations and there was concern 
regarding the minimum number of observations required to obtain a representative median estimate. A 
bootstrapping approach was developed by the authors to estimate the minimum number of observations 
required.    
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The bootstrapping process utilized data from a subset of 68 stations that had been used in an earlier pilot 
study (Ryan et al. 2011). Stations with a minimum of 65 observations were included. Rather than just take 
the median of the original series as an estimate of the ‘true median’, the bootstrapped 99% confidence limits 
were generated to reflect the range for the ‘true median’ and acknowledge the possible imprecision of the 
estimate given the available series.  

One hundred bootstrapped 
samples with replacement were 
generated for each monitoring 
station for sample sizes of 10, 
20, 30 and so on up to 160, and 
the median of each sample was 
estimated.  Various percentiles 
were calculated from each 
distribution of bootstrapped 
medians for each sample size for 

each water quality monitoring station and were compared with the bootstrapped 99% confidence limits for 
the median of the station’s original series (Table 1).  Looking at EC for example, for bootstrapped samples 
with 60 observations, 80% of the median estimates were within the 99% confidence limits of the original 
series (i.e. the 10th and 90th percentiles of the bootstrapped distribution of the medians were between the 
99% confidence limits of the median for the original series).  

The number of stations with at least 60 observations whilst meeting the selection criteria was too few to 
provide the desirable spatial coverage so the percentile range was relaxed to 70% (i.e. 15th and 85th 
percentiles) which lowered the minimum number of samples to 40 for all five water quality variables and 
increased the number of suitable stations to 178.  

2.4. Predictive Models 

Given that there were 178 stations meeting the selection criteria and 73 water quality predictors under 
consideration, any regression model containing the full set of predictors would be overfitted and have poor 
predictive power.  Model reduction procedures were therefore necessary and the authors have largely 
adhered to the approaches advocated by Harrell (2010), which advocate a maximum ratio of predictors to 
observations of 1:10, based on the findings of Harrell et al. (1984; 1985).   

Pre-model reduction procedures included: literature/knowledge reviews to eliminate weak conceptual links; 
removal of predictors with narrow distributions; identification of redundant and uninformative predictors. 
Statistical procedures were minimized in keeping with the general principle that such investigation require 
special adjustments must be made to P-values, standard errors, test statistics and confidence intervals in 
order for these statistics to have the correct interpretation (Harrell 2010). For the same reason, decision trees 
(Breiman et al.1984) were not used to explore the data as these result in overfitting in three directions: 
searching for the best predictors, for best splits and searching multiple times.   

Predictor reduction 
Once conceptual links had been reviewed, principal components analysis was used to further compress the 
predictor set along thematic associations.  The five flow variables were combined into a Flow PCA group, 
25 rainfall variables combined into a Rainfall PCA group and 12 catchment-scale variables combined into a 
Catchment PCA group. 

PC axes were retained as predictors if the eigen value was greater than 1. Two flow, three rainfall and three 
catchment PCs were retained for the model reduction process, with well over 90% of the total variance 
preserved in each case.  This process reduced 42 of the original predictors down to eight principle 
components. 

The candidate predictor list still exceeded the 10:1 rule (31 for electrical conductivity, 35 for turbidity, 19 
for water temperature, 33 for total nitrogen and total phosphorus), hence model reduction was also required. 

Model reduction 
The reliability of commonly used model reduction techniques such as forward, backward and stepwise 
selection has been questioned because there can be more than one ‘best model’, R2 values tend to be biased 
high, significance tests have less than the assumed degrees of freedom, error in regression coefficients is 
biased low and collinear predictions can be arbitrarily interchanged (Harrell, 2010).  Sauerbrei and 
Schumacher (1992) suggested a bootstrapped approach as an aide in selecting predictors for the final 

Table 1: The number of samples required to obtain percentile 
estimates within the 99% confidence limits of the original series 

Water Quality  Variable 
10th and 90th  
Percentiles 

15th and 85th 

Percentiles 
20th and 80th 
Percentiles 

Electrical Conductivity (EC) 60  40  30  

Water Temperature 60  40  30  

Turbidity 60  40  30  

Total Nitrogen 50  40  30  

Total Phosphorus 40  40  20  
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reduced model.  The principle is that the frequency of predictor selection across all of the bootstrapped 
models is an indication of importance: important predictors will appear very frequently and unimportant 
predictors infrequently. In this way, the final predictor list is selected quite literally by weight of numbers. It 
is important, however, to note that the choice of a cut-off frequency is arbitrary (Harrell 2010). 

In this study a similar bootstrapping process to Sauerbrei and Schumacher (1992) was applied, along with a 
novel selection procedure for choosing the final model predictors. The selection procedure was designed to 
address the arbitrary nature of cut-off points by qualifying it against the bootstrapping results and finally 
against the number of observations. The procedure can be summarised in the following steps: 

1. Bootstrap the medians for each station 1,000 times and obtain the median for each bootstrapped 
sample for each station 

2. Estimate the reduced model for each the water quality indicator for each bootstrapped sample set using 
backwards regression.  The optimum model was determined when the Schwarz Bayesian Information 
Criterion (SBC) achieved its lowest value (Schwarz, 1978). 

3. Calculate summary statistics for all candidate predictors.  That is, calculate the frequency of every 
predictor and the number of predictors in the 1,000 bootstrapped reduced models and then estimate the 
mean and standard deviation of predictors for the bootstrapped samples. 

 

Once the set of bootstrapped reduced models was created, the list of predictors for a final model was 
selected by sequentially applying the following three rules: 

Rule 1: Identify predictors that occurred in greater than 50% of the bootstrapped samples (based on the 
logic that important predictors should be present in the majority of bootstrapped samples). 

Rule 2: Adjust the number of predictors so that it is representative of the mean number of predictors in the 
bootstrapped models. Given that the number of predictors in each bootstrapped model was selected  

according to its optimal SBC value, 
it was assumed that the average 
number of predictors from the 1,000 
bootstrapped models would indicate 
the optimum number of predictors 
that should be included in a final 
model.  

The number of predictors selected 
by Rule 1 was compared to the 
mean number of predictors for the 
bootstrapped set: if the total selected 
by Rule 1 was within one standard 
deviation of the mean, then it was 
retained. If it differed by more than 
one SD, then predictors were added 
or removed irrespective of whether 
they occurred in more than 50% of 
samples. For example, if 13 
predictors occurred in more than 
50% of the models, then Rule 1 
would return a value of 13. If, 
however, the average number of 
samples across the bootstrapped 
models was 10 with a standard 
deviation of 2, then 13 predictors 
would exceed the Rule 2 limit. One 
predictor would need to be removed.  

Rule 3: The ratio of predictors to 
samples could not exceed 1:10. This rule ensured that the final arbiter in predictor selection was the strength 
of the data itself. If the ratio exceeded 1:10 after Rules 1 and 2 were applied, then predictors were removed 
in order of frequency until the ratio was equal to or less than 1:10. For example, after applying Rules 1 and 
2, a reduced model may have 12 predictors and 150 samples. The ratio in this case is 1:12.5, which is lower 
than the 1:10 rule. Therefore, a final model with 12 predictors would not violate Rule 3. 

Table 2: Frequency of predictor occurrences in bootstrapped 
backwards selection regression models for Total Nitrogen 

(truncated list not showing all 33 predictors).  The highlighted 
predictors were retained in the final model 

Predictor No. Samples % samples 

Distance to Centroid,  OPI Class 5 871 87.1 

Distance to  Upstream Dam 812 81.2 

Distance to Centroid,  Intensive Animal Prod. 799 79.9 

Catchment PC 2 780 78 

% Cover Intermediate Groundwater Systems 720 72 

% Cover Trees and Shrubs 700 70 

% Cover Regional Groundwater Systems 682 68.2 

Distance to Centroid,  urban 659 65.9 

% Cover Local Groundwater Systems 616 61.6 

% Cover OPI Class 2 567 56.7 

% Cover OPI Class 3 555 55.5 

Catchment PC 3 551 55.1 

% Cover, Wetlands 534 53.4 

% Cover OPI Class 5 532 53.2 

Catchment PC 1 494 49.4 

% Cover OPI Class 4 459 45.9 
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Table 2 gives an example for the total nitrogen model. 33 different predictors were selected in at least one 
bootstrapped model, the average number of predictors was 16 and SD = 4. A total of 14 predictors were 
selected in over 50% of bootstrapped models, which was within one standard deviation of the mean. The 
total nitrogen model comprised 112 stations, producing a predictors/samples ratio of 1:8.  This violated 
Rule 3 of the selection procedure so the last three predictors were omitted and the final model retained the 
first 11 predictors only. In effect, the final total nitrogen model has been penalized by its sample size. 

All bootstrapping and regression procedures were performed with the statistical software SAS Version 9.2 
(2008).   

Model Validation 
The model was validated using a bootstrapped technique based on Efron (1983, 1986), Efron and Gong 
(1983), and Efron and Tibshirani (1986) that used bootstrapped sample sets to test the predictive accuracy 
of each regression model. Each bootstrapped data set was fitted to the final model (as determined earlier) to 
generate a R2 estimate, and repeated 1,000 times to produce an average bootstrap R2. The difference 
between the average bootstrapped R2 and the R2 from the original model was used to estimate the model’s 
predictive bias, or ’optimism’ (Harrell 2010). If the mean bootstrapped R2 was less than the original 
model’s R2, then this implied overfitting and an overly optimistic estimate of predictive accuracy. The 
difference between the two R2 estimates was subtracted from the original model R2 to provide a final model 
that has been ‘bias-corrected’ or ‘overfitting-corrected’ (Harrell 2010). The same procedure was used to 

estimate the optimism of each of the regression 
coefficients. (Results not presented here.)  

The bootstrapped validation procedure was as follows: 

Step 1: Bootstrap the original set of medians (with 
replacement) 1,000 times, using a different random 
number seed value each time. 

Step 2: Fit each bootstrapped sample to the final 
regression model and calculate mean statistics. Calculate 
average bootstrapped coefficients and standard errors, so 
that bias estimates can be calculated for each predictor. 

The average bootstrapped model R2 was also calculated with the same intention of calculating a bias 
estimate after comparison with the original model. 

Step 3: Use bias estimates to ‘bias-correct’ the original model parameters.  

Results for the model R2 are summarised in Table 3 and show that in all cases, the difference between the 
model R2 and the mean bootstrapped R2 was very small.  

3. CONCLUSIONS AND RECOMMENDATIONS 

The bootstrapping approach was used on three occasions as part of this project. 

First it was used to assess the minimum number of observations required at each water quality monitoring 
station to obtain a representative estimate of the median result for that station.  The spread of geographical 
regions for stations in this analysis was crucial to ensure that the resulting sample size was as applicable as 
possible to stations other than those used to estimate the sample size. In particular it should be recognized 
that this process only included stations in the Murray Darling Basin (Ryan et al. 2011) and the subsequent 
predictive models were built including stations on the eastern side of the Great Dividing Range.  The 
additional stations were not expected to require more observations to obtain a representative median than 
those used in this sample size estimation. Bootstrapping allowed the development of a distribution of 
medians for each water quality variable for each sample size of interest; from which various percentiles 
were able to be extracted and compared with the 99% bootstrapped confidence limits for the median of the 
original set of medians.  Although a compromise was reached based on the 15th and 85th percentiles of the 
bootstrapped medians being within the 99% confidence limits of the median for the original data, i.e. 40 
observations was required, the process of obtaining the sample size was regarded as successful.  Since the 
publication of these results, comments have been received as to estimating sample sizes assuming the 
median of the original series is the ‘true’ median and obtaining bootstrapped medians for smaller sample 
sizes as done here.  Then, instead of comparing percentile intervals with the 99% confidence interval of the 
original series assess the coverage probabilities by comparing the ‘true’ median with the bootstrapped 
confidence intervals from the range of sample sizes.  This approach has yet to be explored. 

Table 3: Summary of model R2 and mean 
bootstrapped R2 from the reduced models 

Variable Model R2 Bootstrapped R2

Electrical Conductivity 0.70 0.67 

Turbidity 0.81 0.79 

Water Temperature 0.54 0.52 

Total Nitrogen 0.57 0.51 

Total Phosphorus 0.72 0.68 
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In the model reduction process, bootstrapping across the station medians with replacement and repeating 
the backwards selection procedure potentially allowed models to be selected based on multiple observations 
with similar geographical predictors.  For example, a bootstrapped sample may include a small number of 
stations many times and as a result the reduced model will be heavily dependent on the geospatial 
predictors for that small group of stations.  If this pattern of geospatial data across the samples is rare this 
reduced model will not occur very often.  Hence, intuitively the model’s ability to predict water quality for 
a new station should be improved. After obtaining the results of the backwards selection models the three 
step process developed by the authors to determine the final model proved objective and easy to apply. All 
final reduced models selected using this process contained geospatial predictors deemed to be appropriate 
for the water quality variable of interest. 

Lastly, bootstrapping was used to validate the final reduced model for each water quality variable. The 
models did not appear to over-fit the data or overly bias estimates according to Harrell’s optimism criteria 
for the estimated R2 or regression coefficients. 

The authors found the process described above provided them with a framework to obtain the final 
predictive models.  However, as with any project care must be taken in understanding the data on hand, the 
appropriateness and validity of collapsing response data into summary statistics, as done in this project with 
the medians, and the role of the predictors.   

The interpretation of the reduced models and how the results will feed into water quality guideline 
development will be provided in future publications as this work is ongoing.   
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