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Abstract: Calculating the volumes of water discharged by streams is becoming increasingly important in
water accounting and deciding how much water to allocate to competing uses. Water accounting is par-
ticularly important in Australia, as the driest inhabited continent and also in the face of potential impacts
of a changing climate. Stream networks all over the world are littered with gauging stations, which take
regular measurements of steam flow in order to help natural resource managers make decisions regard-
ing water allocation. Estimating total discharge volumes is also of utmost importance when estimating
pollutant loads from catchments.

In order to calculate the total discharge volume, one must integrate the hydrograph (the graph of stream
flow with time) over the period of interest. The simplest method to perform the integration is a trapezoidal
scheme, however this fails to account for a number of sources of uncertainty inherent in the hydrograph,
namely: (i) what happens between the discrete observations; (ii) gauging stations measure water height
and flow is estimated using a rating curve between height and flow; and (iii) there are measurement er-
rors associated with the height data recorded at gauging stations. We present a Monte Carlo method that
employs: (i) nonparametric stochastic differential equations (SDEs) to bridge the gaps between discrete
observations; and (ii) the Weighted Nadaraya-Watson estimator to estimate the conditional distribution
of log-flow given water height. The output of the method is an ensemble of hydrographs that are faithful
to the observed data, but incorporating these uncertainties/errors. Integrating the members of this ensem-
ble gives rise to a distribution for the total discharge volumes and properly accounts for the imperfect
information available.

We demonstrate the methods using hydrographic data from Obi Obi Creek in the Mary River catchment,
Queensland, Australia and examine the uncertainty inherent in total discharges when integrating over a
single month and over an entire year. We also introduce an artificial gap of 375 days into the hydrograph
and demonstrate how well our simulated diffusions replicate the dynamics of stream flow. Whilst our
Monte Carlo method is useful for estimating total discharge volumes, the nonparametric SDEs used also
appear to have good potential as stochastic rainfall-runoff models in their own right.
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1 INTRODUCTION

Estimating total discharge of streams is an important part of water resource management. In deciding
how best to allocate volumes of water to the likes of irrigators, drinking water supplies and environmental
flows, it is imperative to study historical hydrographic records. If one was interested in the total annual
flow of a stream, the hydrograph (the record of stream flow over time) could be integrated for each year
yielding a distribution of values, from which summary statistics can be computed. At first glance, this
is a simple task, however, integrating the hydrograph is in itself a delicate problem and care should be
taken to account for a number of sources of uncertainty that are typically inherent in the data. The
purpose of this work is to outline a statistical method for integrating hydrographic data in the face of
multiple sources of uncertainty, namely: (i) process uncertainty; (ii) rating curve uncertainty; and (iii)
measurement uncertainty.

Process uncertainty refers to our lack of knowledge about what transpires between the observations of
flow, acknowledging that gauging stations capture only discrete observations of an underlying continuous-
time stochastic process. Clearly, such uncertainty decreases as the density of observations increases on
the time line and will be of greater importance in situations where discharge is measured daily than where
measurements occur with a frequency in the order of minutes. Process uncertainty also becomes increas-
ingly important when there are periods of missing data in a flow series. Such periods are commonplace
in hydrographic data and are typically the result of equipment malfunction, vandalism or the lodging of
debris in control weirs. Rating curve uncertainty corresponds to errors in the observed flow. Measuring
flow directly is expensive and time-consuming and requires careful measurements of channel geometry
and stream velocity by experienced personnel. For this reason, a typical gauging station measures only
water depth, using a pressure transducer. Hydrographers do record actual stream flow on a regular ba-
sis (say monthly) along with water height and use this data to build a (typically nonlinear) relationship
between depth and flow, called a rating curve. Using this rating curve, height data collected by gauging
stations can be used to estimate flow, but it is imperative to acknowledge the uncertainty surrounding
such estimates. Measurement uncertainty can occur in a number of ways, but frequently stems from the
measurement precision of instruments. For example, a pressure transducer at a gauging station, measur-
ing water depth with a certain (small) error, might be reported as ±5mm. Each of these three sources
of error/uncertainty should be acknowledged and incorporated into our estimates of total discharge when
integrating a hydrograph. Doing so presents the practitioner with a distribution of discharge volumes for
a period of interest rather than the single number obtained when integrating a hydrograph with, say, a
trapezoidal integration scheme.

In order to capture process uncertainty, we model stream flow as a continuous-time stochastic process
using stochastic differential equations (SDEs). SDEs have enjoyed widespread use in fields such as
finance and econometrics, but surprisingly have had only limited uptake in many other fields, where their
uses seem obvious, including hydrology. Some exceptions in the water quality domain include the work
of: Finney et al. (1982) who modelled the joint and marginal probability distributions of biological oxygen
demand (BOD) and dissolved oxygen (DO) at any point along a river; Curi et al. (1995) who looked at
a stochastic model of DO for the Thames River; and Zielinski (1991) who discussed the use of SDEs
for modelling BOD. In catchment modelling, Unny (1984); Unny and Karmeshu (1984) examined the
use of SDEs as models for the generation of stochastic streamflows. Tsai and Oh (1995) discuss the use
of jump-diffusion processes for modelling sediment transport, whilst Marinho et al. (2001) demonstrates
how SDEs can be used for modelling volumes discharged into a dam for the purpose of flood control.
A review of the subject of SDEs with some additional insight into their applications in water resource
engineering is given in Bodo et al. (1987).

Accounting for uncertainty in rating curves has been a focal point of statistical hydrology and a plethora
of approaches have been proposed. Petersen-Øverleir (2004) discusses the classical approach of using
nonlinear-least squares (NLS) for constructing classical power-law type rating curves, pointing out that
this method is only applicable for modelling a very narrow class of variance heterogeneity and that a
heteroscedastic maximum likelihood model would be more appropriate. Moyeed and Clarke (2005);
Petersen-Øverleir et al. (2009) propose the use of Bayesian methods for fitting rating curves, whilst Ingi-
marsson et al. (2010) suggest adding a B-spline term to the standard power-law rating curve model within
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a Bayesian inferential framework. Other approaches proposed include Jansson (1996) who suggests strat-
ifying data into discharge classes for developing sediment rating curves and Ghimire and Reddy (2010)
who use a machine learning approach to develop rating curves. In this work we adopt a fully nonpara-
metric approach to fitting rating curves and quantifying uncertainty using kernel estimators, which have
seen application in other areas of hydrology (see Moon and Lall (1994); Apipattanavis et al. (2010) for
example).

We present novel statistical methodology for estimating total discharge volumes in light of multiple
sources of uncertainty. The methods are predominantly nonparametric and data driven, so that mini-
mal analysis is required on behalf of the practitioner. This makes the methods particularly useful for
inclusion in software used by water resource managers for water accounting. SDEs are used to model the
behaviour of the hydrograph and incorporate inter-observational stochasticity into the integration proce-
dure. The drift and volatility functions of the SDEs are estimated nonparametrically from the observed
data, offering a rich class of possible stream behaviour. The error in estimating discharge from a rating
curve is quantified using a kernel regression estimator known as the weighted Nadaraya-Watson (WNW)
estimator. Rather than use individual rating curves for different periods of time, we incorporate the time
of the rating curve data as an independent variable in our model, so that our estimates of discharge are
smoothed with respect to both water depth and time.

2 DIFFUSION MODELS FOR STREAM FLOW

One of the most common approaches used to describe a continuous-time, continuous-state stochastic
process,Xt, is the SDE (see Klebaner (1998)), which typically has the form dXt = µ(Xt)dt+σ(Xt)dBt,
where µ(·) is known as the drift function, σ(·) is known as the volatility function and Bt is a standard
Brownian motion. The solution Xt to such an SDE is known as a diffusion process. For many complex
systems, including those in hydrology, it is difficult to formulate defensible parametric forms for the drift
and volatility functions. There has therefore been a push in recent years towards estimating µ(·) and
σ(·) nonparametrically, based on a series of discrete observations from Xt (Aı̈t-Sahalia (1996); Jian and
Knight (1997); Bandi and Phillips (2003)).

For modelling stream flow, we adopt the following SDE dYt = µ(Yt, st, rt)dt+ σ(Yt, st, rt)dBt, where
Yt is the log-flow process; st is a seasonal, deterministic process taking values in [0, 1] and corresponding
to the proportion of the year that has transpired; and rt is a rainfall variable obtained by spatially averaging
daily rainfall grids over the catchment area of a gauging station. Bandi and Phillips (2003); Bandi and
Moloche (2008) showed that µ(·) and σ(·) can be estimated nonparametrically and these estimators may
be both consistent and asymptotically normal (using both infill and long span asymptotics) even if the
diffusion process is non-stationary. All that is required to prove consistency and asymptotic normality
is that Yt is Harris recurrent, meaning that the process will transition from any subset of the state space
to any other subset of the state space infinitely often over an infinite time horizon. This is as benign
an assumption as one could hope for and can reasonably be assumed to hold for many hydrological
systems of interests. It opens up an extremely rich class of non-stationary, seasonal stochastic processes
for modelling the types of complex behaviours observed in stream flow, provided sufficient historical data
are available for estimation.

Estimation of the drift and volatility functions uses the Nadaraya-Watson estimators Nadaraya (1964);
Watson (1964) based on those in Bandi and Phillips (2003); Bandi and Moloche (2008) and having the
form:

µ̂(y, s, r) =

∑n−1
i=1

(Yi+1−Yi)
(ti+1−ti) Kh1(Yi − y)Kh2(si − s)Kh3(ri − r)∑n−1
i=1 Kh1(Yi − y)Kh2(si − s)Kh3(ri − r)

and

σ̂2(y, s, r) =

∑n−1
i=1

(Yi+1−Yi)
2

(ti+1−ti) Kh1(Yi − y)Kh2(si − s)Kh3(ri − r)∑n−1
i=1 Kh1(Yi − y)Kh2(si − s)Kh3(ri − r)

.
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Here, Kh(·) denotes a continuous, bounded and symmetric kernel function with bandwidth h. For
our purposes, we choose Kh1(a) = 1

h2
√

2π
exp(− a2

2h2 ) (the Gaussian kernel) and Kh2(si − s) =
exp[cos(si−s)/h2

2]

h2πI0(1/h2
2)

(the Von Mises kernel), where I0 is the modified Bessel function of order 0. We em-
ploy the von Mises kernel, whose domain is the circle, to ensure that observations made late in the year
have influence on those early in the year and vice versa. Note that we have chosen the same three band-
widths for the estimation of the drift and diffusion functions. This is not entirely necessary, but drastically
reduces the dimension of the bandwidth search space when performing cross-validation.

Successful implementation of our diffusion model relies on the appropriate choice of three bandwidths.
These bandwidths were selected using 10-fold cross-validation, removing blocks of the hydrograph with
each fold. Using the remaining data (i.e. not in the block), drift and diffusion functions were estimated
and then, in conjunction with our SDE, used to simulate m hydrographs over the missing block. For
an observation of flow yt at time t, the values of the m diffusions (from the missing block in which
yt resides) were used to generate a kernel density estimate ft(yt|h). Bandwidths were chosen to max-
imise argmaxh∈H

∑n
i=1 log[fi(yi|h)], the log-likelihood of the observed hydrograph under the diffusion

model using a grid search.

3 RATING CURVE UNCERTAINTY

We use the WNW estimator (Hall et al., 1999; Cai, 2001) to estimate, nonparametrically, the distribution
of flow given an observation of stream depth. This estimator has a number of desirable properties, namely,
it reproduces the superior bias properties of locally linear estimators, like the estimator proposed by Yu
and Jones Yu and Jones (1998), but additionally, unlike the Yu-Jones estimator, it always returns a valid
distribution function. For our purposes herein, we define the WNW estimator of the distribution function
as

F̂ (Yt = y|Dt = d, T = t) =
∑r
i=1 pi(d, t,Y,D,T)Kh4(d−Di)Kh5(t− Ti)I(Yi ≤ y)∑r

i=1 pi(d, t,Y,D,T)Kh4(d−Di)Kh5(t− Ti)
,

where y, d and t are the log-discharge, stream depth and observation time respectively. Y,D and T
are r-dimensional vectors containing the observations of log-discharge, stream depth and the observation
times respectively, that are used to build the rating curves for the gauging station. The functions Kh4(·)
and Kh5(·) are Gaussian kernel functions (as defined above) with bandwidths h4 and h5 respectively and
I(·) is the indicator function, which takes the value of one if the expression in brackets is true and zero
otherwise. Finally, the pi(d, t,Y,D,T) are a set of additional weights, that are a function of the rating
curve data as well as the time (t) and depth (d) at which the distribution is being computed. These weights
have the property that each pi ≥ 0,

∑n
i=1 pi = 1, in addition to

r∑
i=1

(Di − d)pi(d, t,D,T)Kh4(d−Di)Kh5(t− Ti) = 0 and

r∑
i=1

(Ti − t)pi(d, t,D,T)Kh4(d−Di)Kh5(t− Ti) = 0.

The weights satisfying these constraints are equal to pi = Mi/
∑r
i=1Mi, where

Mi = {1 + λ1Kh4(d−Di)Kh5(t− Ti)(d−Di) + λ2Kh4(d−Di)Kh5(t− Ti)(t− Ti)}−1.

and λ1 and λ2 are Lagrange multipliers. The {pi} satisfying the above constraints are not uniquely
defined and the accepted approach is to choose λ1 and λ2 in order to maximise

∑r
i=1 log(pi).

The procedure outlined above allows us to estimate the distribution function of stream flow conditional on
the observed stream depth at any time in the gauging station’s history. The incorporation of time into the
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estimator produces a conditional distribution function that varies smoothly through time to incorporate
observed changes in the depth-flow relationship.

The bandwidths, h4 and h5 were chosen by fitting a kernel regression between log-flow, depth and time
using the function ‘npregbw’ within the ‘np’ library of the R statistical package (R Development Core
Team, 2011).

4 MONTE CARLO SIMULATIONS

In order to assess the distribution of the total discharge volume over a period of interest, we wish to
simulate N hydrographs that are faithful to the observed data, but incorporating: (i) process uncertainty;
(ii) rating curve uncertainty; and (iii) measurement error. This Monte Carlo scheme is described by the
following steps.

Sampling from the Distribution Function of Total Discharge Volumes

1. Set N = 1000 or some other appropriately large value, defining the number of simulations to
perform and set i = 1.

2. Generate n uniformly distributed random variables, (Ui,1, . . . , Ui,n) over the interval [0, 1] and n
uniformly distributed random variables, (Wi,1, . . . ,Wi,n) over the interval [−0.005, 0.005].

3. For each observation dj ∈ d (1 ≤ j ≤ n), generate a sample of stream depth (in metres) as
Di,j = dj +Wi,j .

4. For each element (tj ;Di,j) ∈ (t; Di), calculate F̂ (·|D = Di,j , T = tj) and obtain samples of
log-flow Yi,j by inverting the estimated conditional distribution function: Yi,j = F̂−1(Ui,j |D =
Di,j , T = tj).

5. For each pair of successive log-flow samples (Yi,j , Yi,j+1), generate a diffusion bridge Y̆j,(j+1)
i ,

having Bj time intervals of length ∆t, beginning at Yi,j and ending at Yi,j+1.

6. Compute the total discharge volume as the integral of the simulated diffusion process using

Vi =
1
2

n−1∑
j=1

Bj∑
k=1

(tj+1 − tj)
Bj

[
exp(Y̆ j,(j+1)

i,k ) + exp(Y̆ j,(j+1)
i,(k+1) )

]
7. If i < N , then i = i+ 1 and go to step 4, otherwise go to step 8.

8. Return V = (V1, . . . , VN ) as an independent and identically distributed sample from the distribu-
tion function of the total discharge volume.

The diffusion bridges referred to in step 5 are realisations of the diffusion process that start and finish at
particular values of log-flow. There are achieved here by a simple rejection sampling method, whereby
a trajectory is retained as a diffusion bridge if it begins at a log-flow of, say, a and ends close to the
endpoint b, say, within [b − ε, b + ε], where ε > 0 is small. The diffusions were simulated according to
an Euler-Maruyama scheme Yi+1 = Yi + µ(Yi, ri, si)∆t + σ(Yi, ri, si)

√
∆tZi, where Zi is a standard

normal random variate.

We apply our Monte Carlo method to hydrographic data from Gardener’s Falls at Obi Obi Creek in the
Mary River catchment, Queensland, Australia. We estimated the drift and diffusion functions using daily
flow data over the period 1/1/2000 - 11/4/2010 and estimated the total discharge volumes for the month of
January 2009 and the entire year 2009. The probability distributions obtained were then compared with
the discharge volumes obtained under trapezoidal integration of the daily flow data when accounting for
no uncertainties.

As an additional illustration of the usefulness of these methods, we imposed an artificial gap of 375 days
in the hydrographic data, similar to those that occur when a station breaks down, in order to assess the
ability of our method to statistically infill the hydrograph.
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Table 1. Total Discharge Volumes based on trapezoidal integration and our Monte Carlo method.
Period Vtrap Mean(V) Min(V) Max(V) Q0.05(V) Q0.95(V)

1 Jan 2009 - 31 Jan 2009 0.0259 0.0247 0.0213 0.0288 0.0230 0.0266
1 Jan 2009 - 31 Dec 2009 0.9343 0.9237 0.8611 1.0046 0.8775 0.9676

Figure 1. A 375 day gap imposed on the hydrograph (red) and density plot of 100 diffusion bridges used
to fill the gap (grey).

5 RESULTS AND CONCLUSIONS

Table 1 shows the total discharge volumes computed using a simple trapezoidal integration (Vtrap) and the
mean, minimum, maximum, 5th percentile (Q0.05) and 95th percentile (Q0.95) of discharge volumes from
1000 simulated hydrographs (the elements of V ). There is good agreement between the mean of V and
Vtrap and Vtrap is contained within the bounds of [Q0.05(V ), Q0.95(V )] for both time periods examined.
We note that the amount of variability in the distributions of flow is not insignificant when examined for
a single month and for a year.

Figure 1 also demonstrates that our nonparametric diffusion bridges do a respectable job of infilling
even very long gaps in the hydrograph. The SDEs appear to emulate the behaviour of the stream well,
capturing the quickflow events, the recession curve and baseflow conditions, based solely on rainfall and
seasonal data. The results suggest that these SDEs also have potential as a class of 3-parameter stochastic
rainfall-runoff models in other application areas.
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