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Abstract: Flooding is one of Australia’s costliest natural disasters, which on average costs around $AUD400 
million annually. In 2010-2011 alone, the cost of flood damage has exceeded $AUD20 billion. Flood estimation 
is therefore crucial in assessing and managing flood risks. Flood Frequency Analysis (FFA) is one of the most 
commonly adopted techniques used to estimate floods with an associated frequency, known as design floods. 
These design floods are used in the planning and design of water infrastructure projects, along with various 
floodplain planning regulations. 

FFA largely relies on the existence of long recorded streamflow data. Due to the sheer size of Australia and the 
substantial costs involved, streamflow gauges are generally restricted to the highly populous and coastal regions 
of Australia. As design flood estimates are quite often needed in ungauged catchments, which have insufficient, 
unreliable or no streamflow data, an alternative method known as Regional Flood Frequency Analysis (RFFA) 
is generally adopted for design flood estimation. 

RFFA attempts to substitute the lack of temporal data with spatial data, to make more accurate flood estimates at 
ungauged sites. The most commonly adopted RFFA techniques include the Probabilistic Rational Method 
(PRM), the Index Flood Method (IFM) and the Quantile Regression Technique (QRT). The national guideline 
for design flow estimation, Australian Rainfall and Runoff (ARR) 1987, currently recommends a particular form 
of the PRM and the IFM for use in Western Australia (WA). The PRM has been widely criticised due to the 
simplistic assumption involved in plotting and interpolating the dimensionless runoff coefficients. At the same 
time, identifying homogeneous regions in connection with the IFM, has also proven to be problematic in 
Australia. 

Regression-based RFFA techniques have, however, shown promise in a number of recent studies across 
Australia and are the standard method in some other countries, such as the United States. The aim of the paper is 
to develop and compare two regression-based techniques: the QRT and the Parameter Regression Technique 
(PRT). In the QRT, individual flood quantiles are regressed against the catchment characteristics; while in the 
PRT, the parameters of a probability distribution (here the Log Pearson type 3 distribution is considered) are 
regressed against the catchment characteristics. An ordinary least squares regression method is used in this study 
for developing the prediction equations. 

The study uses streamflow and catchment characteristic data from 206 catchments across WA and part of the 
Northern Territory to develop regional prediction equations. The dataset was divided into three regions, 
according to the Australian Drainage Divisions (VI, VII and VIII), with 125, 12 and 69 catchments respectively. 
Independent testing of the QRT and the PRT was carried out on independent test catchments, which were 
randomly selected and were not used in the development of the prediction equations. 

It has been found that both the QRT and PRT provide reasonable predictions. The developed prediction 
equations are also relatively easy to apply as they only contain two predictor variables, being catchment area 
and design rainfall intensity. It should be noted that results from GLS regression for WA presented in Haddad et 
al. (2011b) should be more reliable than this study. The findings from this study and other relevant RFFA 
studies would form the basis of recommendation of a new RFFA for WA in the upcoming edition of ARR. 

 

Keywords:  Regional flood frequency analysis, Western Australia, regression technique, ordinary least 
squares. 
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1 INTRODUCTION 

Flooding is one of Australia’s costliest natural disasters, which on average costs around $AUD400 million 
annually. In 2010-2011 alone, the cost of flood damage has exceeded $AUD20 billion. To assess flood risk and 
adopt appropriate control measures, one needs to estimate flood discharge of a given Average Recurrence 
Interval (ARI), which is commonly referred to as ‘design floods’. This design flood is widely used in flood risk 
management e.g. determining the habitable floor level, design of bridges, culverts, flood control levees, sluices, 
weirs and spill-ways. Design floods can be estimated using Flood Frequency Analysis (FFA), but this requires a 
long period of recorded streamflow data. Australia has an abundance of streams, many of which are isolated due 
to the sheer size of the continent. It is for this reason and the fact that streamflow gauging is relatively expensive 
that there are little to no streamflow records at many locations of interest. Under these circumstances, Regional 
Flood Frequency Analysis (RFFA) is commonly adopted to estimate design floods, which attempts to use data 
from nearby gauged catchments to make flood estimation at ungauged sites of interest.  

There have been notable researches on flow prediction in ungauged basins (PUB) (e.g. Sivapalan, 2003). Many 
different RFFA techniques have been proposed for design peak flow estimation, including the Probabilistic 
Rational Method (PRM), the Index Flood Method (IFM) and the Quantile Regression Technique (QRT). The 
Australian national guideline for flow estimation, Australian Rainfall and Runoff (ARR), recommended several 
RFFA methods (I. E. Aust., 1987), e.g. the PRM and IFM were recommended for use in Western Australia 
(WA). The PRM is widely used due to its simplicity and ease of application; nevertheless it is based on a 
dimensionless runoff coefficient which is assumed to vary smoothly over geographical space (Hodgkins et al., 
2007; Young et al., 2009). It has been found that the runoff coefficient may show sharp variation within a close 
proximity, reflecting discontinuities at catchment boundaries. French (2002) noted that the isopleths of the 
runoff coefficient in ARR1987 ignore the existence of watercourses.  Pirozzi et al. (2009), Rahman et al. (2008) 
and Rahman and Hollerbach (2003) investigated the PRM and attempted to link the runoff coefficient with 
catchment characteristics, but they had little success. There is a lack of independent testing of the PRM and 
users have little knowledge about the uncertainty in design flood estimates derived from the PRM. Another 
commonly used technique, the IFM, is also limited in that it requires the hydrologic region to be acceptably 
homogeneous (Hosking and Wallis, 1993); however, in the case of Australia, identifying acceptably 
homogeneous regions has been found to be difficult (e.g. Bates et al., 1998). 

Since the release of the 3rd edition of ARR in 1987 there have been notable advances in RFFA. Moreover, there 
is an additional 24 years of hydrological data available (including streamflow data) at many locations across 
Australia, which would increase the accuracy of new RFFA methods. Recently, the National Committee on 
Water Engineering (NCWE) has put together 21 projects to revise ARR. Project 5 focuses on the development 
of new RFFA methods for Australia. This paper focuses on Western Australia and in particular compares two 
regression based RFFA methods, the QRT and the Parameter Regression Technique (PRT). The PRT 
regionalises the first three moments of the Log-Pearson Type 3 (LP3) distribution (explained in Section 3). An 
Ordinary Least Squares (OLS) regression method is adopted in this study as a first step to develop regional 
prediction equations. In a complementary paper (Haddad et al. 2011b) an advanced method employing the 
Generalised Least Squares Regression (GLS) along with Region-Of-Influence (ROI) approach (Burn, 1990) for 
WA has been adopted. The results from Haddad et al. (2011b) are likely to be more reliable than the results of 
this preliminary study since the GLS regression considers the inter-station correlation of the annual maximum 
flood series and ROI better deals with spatial heterogeneity in RFFA. 

2 THE QUANTILE AND PARAMETER REGRESSION TECHNIQUES 

The quantile regression technique (QRT) was originally developed by the United States Geological Survey 
(USGS), and due to the ongoing development it has remained the leading technique of the USGS to estimate 
flood quantiles in ungauged catchments (Brutsaert, 2005). The method estimates flood quantiles through 
multiple regression between recorded streamflow data and a set of climatic/catchment characteristics within a 
region (Pandey & Nguyen, 1999). The quantile regression technique is expressed as follows: ்ܳ = ௗܦ௖ܥ௕ܤܽ ⋯  (1) 

where ܤ, ,ܥ ,ܽ ;are catchment/climatic characteristics ⋯,ܦ ܾ, ܿ, ݀,⋯ are the regression coefficients and ்ܳ is the 
flood magnitude with ܶ year ARI (flood quantile). There are a number of methods available to determine the 
regression coefficients, OLS, weighted least squares (WLS) and GLS. The OLS method is the simplest of the 
three and finds the best fitting regression parameters by minimising the sum of squared residuals. For the OLS 
estimator to be accurate and efficient the peak flow at each site must be uncorrelated, every site should have 
equal record lengths and at-site flood quantiles should have equal variance, which is unlikely to be satisfied in 
hydrological regression (Tasker & Stedinger, 1989). The GLS regression method is further explained in Haddad 
et al. (2011a). 
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The Parameter Regression Technique (PRT) is similar to the QRT, but instead of quantiles, here the first three 
moments of the LP3 distribution are taken as the dependent variables in the regression analysis. Let ܳ be the 
annual maximum flood series at a site and ܺ = ln	(ܳ), then the mean (ܯ), standard deviation (ܵ) and skew (݃) 
of the ܺ series are taken as dependent variables.  ்݈݊ܳ = ܯ +  (2)  ்ܵܭ

where ்ܳ is flood quantile of ܶ years ARI and ்ܭ is the standardised LP3 frequency factor (which is a function 
of ݃) and can be obtained from ARR1987 or can be approximated using the Cornish-Fisher transformation 
(Fisher and Cornish, 1960).  

3 STUDY CATCHMENTS 

Several factors were considered when selecting suitable catchments for use in the WA; including, the catchment 
size, record length, any regulation (such as dams etc.) and land-use changes. It is suggested in ARR (I.E. Aust., 
1987) that an arbitrary upper limit of 1000 km2 be adopted for small to medium sized catchments; therefore, the 
initial dataset adopted 1000 km2 as the upper limit. The imposed limit lead to a lack of suitable catchments in 
the northern parts of WA, therefore, additional stations with larger catchment areas were also included in the 
dataset. Also, part of NT, situated in Drainage Division VIII, was lumped with the WA as shown in Figure 1. 

Streamflow records are required to be long enough to accurately characterise the underlying flood probability 
distribution. However, there must also be a suitable number of gauged catchments available in RFFA for greater 
spatial coverage. For this reason, a balancing act is required to ensure streamflow records are long enough, 
whilst also ensuring that the spatial coverage of stations is adequate. The ARR revision team suggested a lower 
limit of 25 years of streamflow record length, which was initially adopted; however, this resulted in insufficient 
spatial coverage. The minimum record length was therefore taken as 19 years. It is also crucial that each 
catchment does not contain any major regulation (such as dams etc.) and that no major land-use changes have 
occurred throughout the period of the streamflow record.  

Based on the aforementioned criteria, a total of 
206 catchments were selected across WA and 
the NT (Figure 1). The dataset was then divided 
into three regions, according to the Drainage 
Divisions VI, VII and VIII. These drainage 
divisions are defined by major topographical 
features and key climatic zones; therefore it 
seems appropriate to utilise these divisions. As 
central WA has a lack of data, drainage division 
XII was left out of the study. 

In order to test the accuracy of prediction 
equations, a number of test catchments were 
then selected from the dataset and put aside. The 
split-sample validation technique was applied to 
Drainage Divisions VI and VIII, with 
approximately 20% of sites were left out for 
independent testing. Alternatively, due to the 
lack of catchments available in Drainage 
Division VII, a bootstrapping technique was 
adopted where one catchment was left out and 
the regression equation was developed, the 
developed equation is then applied to the 
catchment that was left out. The procedure was 
repeated for all the sites in Division VII. The catchment information is summarised in Error! Reference source 
not found.. 

Table 1 Summary of catchment information for each drainage division from WA 

Drainage 
Division 

No. of Sites Record Length (yrs) Mean 
Record 

Length (yrs) 

Catchment Area 
(km2) 

Mean 
Catchment 
Area (km2) Total Validation Min Max Min Max 

VI 125 26 20 56 31 0.2 983.1 156.7 
VII 12 12 20 35 29 0.1 1000 346.7 

Figure 1: Distribution of catchments between drainage  
divisions VI, VII, and VIII. 
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VIII 69 14 19 54 34 1.4 4325 645.3 

4 CATCHMENT DATA 

Seven climatic and catchment characteristics were initially selected for use in this study, following the findings 
of previous Australian studies (Rahman, 2005). The main criteria which was used in the study involved the 
relevance of the characteristic to the generation of peak flows (i.e. hydrologically meaningful), ability to obtain 
the relevant data (i.e. easily obtainable) and that each variable is largely uncorrelated with other selected 
variables. The climatic and physical catchment characteristics which were selected are listed below: 

• Catchment area (area, km2) – the area of each catchment was obtained from the Department of Water. 
• Design rainfall intensity (mm/h) – the Bureau of Meteorology’s (BOM’s) IFD calculator was used to 

obtain each of the design rainfall intensities, along with the AUSIFD software. The design rainfall 
intensities (ARIܫௗ௨௥௔௧௜௢௡) used in this study include 2ܫଵ௛௥, 2ܫଵଶ௛௥, 2ܫ଻ଶ௛௥, 50ܫଵ௛௥, 50ܫଵଶ௛௥, 50ܫ଻ଶ௛௥, 2ܫ௧೎, 5ܫ௧೎, 
 ,௧೎ܫ௧೎, and 100ܫ௧೎, 50ܫ௧೎, 20ܫ10

• Slope of the central 75% of the mainstream (S1085, m/km) – S1085 was adopted as it excludes the 
extremes found at each end of the mainstream. The slope was determined using 1:100,000 topographic 

maps and is equal to: ܵ1085 = ாఴఱିாభబ଴.଻ହ௅  where ଼ܧହ and ܧଵ଴ are the elevations of the streambed at 85% 

and 10% of the stream length, respectively.  
• Stream density (sden, km/km2) – it is the channel length per unit area of the catchment. 
• Fraction forest (forest) – it is the fraction of the basin covered by medium to dense forest, measured 

using 1:100,000 topographic maps. 
• Mean annual rainfall (rain, mm) – was obtained at the catchment outlet using the BOM’s data CD of 

mean annual rainfall. 
• Mean annual areal potential evapotranspiration (evap, mm) – was obtained at the catchment outlet 

using the BOM’s data CD of evaporation. 

5 MEASURES OF MODEL ADEQUACY 

Each of the developed prediction equations were evaluated using a number of goodness-of-fit statistics. The 
coefficient of multiple determination (ܴଶ) and adjusted ܴଶ determine how accurately the model fits the observed 
data. Note that 0 ≤ ܴଶ ≤ 1, where 1 indicates the model is a perfect fit. Standard error of the estimate (SEE) 
indicates the spread of predicted values about the prediction line, where a lower value indicates a better fitting 
model, i.e. less variance.  

Each regression equation was also checked to ensure that underlying assumptions of the model are met. The 
Durbin-Watson statistic (DW) is a measure of the correlation of the residuals where a value of 2 indicated that 
there is no serial correlation between residuals. The t-value for the coefficient and two-tailed significance level 
of t (P-value) indicates the significance of each predictor variable. Higher t-values and a low significance level 
(<0.10) indicates that the predictor is significant. The tolerance and variance inflation factor (VIF) measures the 
collinearity of a variable. A tolerance and VIF close to 1 indicate the predictor variables are not highly 
correlated. For highly correlated variables tolerance approaches zero, and VIF moves toward infinity. The 
preceding statistics provide useful information on the accuracy of prediction equations; however, the equations 
may have been affected by points outside the normal range. Outliers in the response variables were detected 
using standardised residuals. Values larger than an absolute value of three are classed as outliers. Influential 
points were identified using Cook's distance.  

6 DEVELOPMENT OF PREDICTION EQUATIONS 

At-site flood frequency analysis is the first step in developing RFFA methods. The annual maximum series data 
was adopted in this study, which consists of the largest flood in each year of record. The at-site flood frequency 
analysis was performed using the FLIKE software (Kuczera, 1999). The program facilitates the use of a number 
of distributions and fitting procedures, including the LP3, Log-Normal (LN), Gumbel, Generalised Extreme 
Value and Generalised Pareto distribution, using either the Bayesian or L moments parameter fitting procedures, 
which were tested in this study. The LP3-Bayesian parameter fitting procedure provided the most consistent 
results and hence was adopted in this study. 

Each of the dependent variables, including the selected flood quantiles, for the QRT, and the LP3 
moments/parameters, for the PRT, was regressed against each of the seven predictor variables. A natural log 
transformation was considered in the regression analysis for both the predictor and dependent variables. The 
Backward Multiple Regression technique in statistical package Predictive Analytical Software (PASW) was 
initially used; however, in most cases it produced impractical equations. Therefore, the Enter Multiple 

3806



Taylor et al., Regional flood modelling in Western Australia: Application of regression based methods… 

Regression technique was adopted to allow for a trial-and-error approach, based on the most appropriate DW, t-
value, P-value, tolerance and VIF statistic values. The models with the highest R2, lowest SEE and that satisfied 
the underlying model assumptions in the best possible manner, were then taken as the best fitting models. 

There has been much debate about the inclusion or exclusion of outliers and influential points, as such in the 
first set of prediction equations outliers and influential points were determined using the standardised residuals, 
Cook’s distance and centred leverage values, but kept in the dataset. Similarly in the second set of prediction 
equations, outliers and influential points were determined and removed from the dataset (with a maximum limit 
of 10% of the dataset). This was carried out for Drainage Divisions VI and VIII; however due to the lack of sites 
in Drainage Division VII, it was not feasible to remove any outliers. The original models in both cases were 
found to be superior; it is thought this could be due to the decrease in variability that occurs when these points 
are removed. The selected prediction equations for each drainage division are shown in Error! Reference 
source not found.. 

Table 2: Selected prediction equations for each drainage division  
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݈݊(ܳଶ) = −7.464 + 0.830 × (ܽ݁ݎܽ)݈݊ + 1.691 × ln( 2ܫଵ௛௥) (3)݈݊(ܳହ) = −3.239 + 0.829 × (ܽ݁ݎܽ)݈݊ + 0.763 × ln( 50ܫଵଶ௛௥) (4)݈݊(ܳଵ଴) = −1.515 + 0.816 × (ܽ݁ݎܽ)݈݊ + 0.116 × ln( 50ܫଵଶ௛௥)  (5)݈݊(ܳଶ଴) = 1.202 + 0.811 × (ܽ݁ݎܽ)݈݊ − 0.723 × ln( 2ܫଵ௛௥)  (6)݈݊(ܳହ଴) = 1.622 + 0.792 × (ܽ݁ݎܽ)݈݊ − 1.072 × ln( 50ܫଵଶ௛௥)  (7)݈݊(ܳଵ଴଴) = 5.693 + 0.788 × (ܽ݁ݎܽ)݈݊ − 1.646 × ln( 50ܫଵ௛௥)  (8)

PRT 
ܯ = −7.462 + 0.833 × (ܽ݁ݎܽ)݈݊ + 1.680 × ln( 2ܫଵ௛௥) (9)ܵ = ;	ଵܥ 	݃ = ଶ are regional average values (10)ܥ ଵ andܥ ଶ, whereܥ
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݈݊(ܳଶ) = −11.366 + 0.521 × (ܽ݁ݎܽ)݈݊ + 7.858 × ln( 2ܫଵଶ௛௥) (11)݈݊(ܳହ) = −15.913 + 0.486 × (ܽ݁ݎܽ)݈݊ + 5.336 × ln( 2ܫଵ௛௥) (12)݈݊(ܳଵ଴) = −14.285 + 0.465 × (ܽ݁ݎܽ)݈݊ + 5.055 × ln( 2ܫଵ௛௥)  (13)݈݊(ܳଶ଴) = −12.949 + 0.445 × (ܽ݁ݎܽ)݈݊ + 4.824 × ln( 2ܫଵ௛௥)  (14)݈݊(ܳହ଴) = −4.914 + 0.431 × (ܽ݁ݎܽ)݈݊ + 5.705 × ln( 2ܫଵଶ௛௥)  (15)݈݊(ܳଵ଴଴) = −4.072 + 0.413 × (ܽ݁ݎܽ)݈݊ + 5.412 × ln( 2ܫଵଶ௛௥)  (16)

PRT 
ܯ = −11.411 + 0.527 × (ܽ݁ݎܽ)݈݊ + 7.765 × ln( 2ܫଵଶ௛௥) (17)ܵ = ;	ଵܥ 	݃ = ଶ are regional average values (18)ܥ ଵ andܥ ଶ, whereܥ
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݈݊(ܳଶ) = 5.620 + 0.531 × (ܽ݁ݎܽ)݈݊ − 1.391 × ln( 50ܫଵଶ௛௥) (19)݈݊(ܳହ) = 6.172 + 0.519 × (ܽ݁ݎܽ)݈݊ − 1.284 × ln( 50ܫଵଶ௛௥) (20)݈݊(ܳଵ଴) = 6.585 + 0.513 × (ܽ݁ݎܽ)݈݊ − 1.287 × ln( 50ܫଵଶ௛௥)  (21)݈݊(ܳଶ଴) = 6.988 + 0.508 × (ܽ݁ݎܽ)݈݊ − 1.317 × ln( 50ܫଵଶ௛௥)  (22)݈݊(ܳହ଴) = 7.506 + 0.503 × (ܽ݁ݎܽ)݈݊ − 1.381 × ln( 50ܫଵଶ௛௥)  (23)݈݊(ܳଵ଴଴) = 7.886 + 0.500 × (ܽ݁ݎܽ)݈݊ − 1.440 × ln( 50ܫଵଶ௛௥)  (24)

PRT 
ܯ = 5.699 + 0.549 × (ܽ݁ݎܽ)݈݊ − 1.512 × ln( 50ܫଵଶ௛௥) (25)ܵ = ;	ଵܥ 	݃ = ଶ are regional average values (26)ܥ ଵ andܥ ଶ, whereܥ

 
Prediction equations for the QRT method for each region included area and design rainfall intensity. Area was 
found to be the most significant predictor variable across all flood quantiles and for the mean flood. Most 
prediction equations performed reasonably well, as can be seen in Error! Reference source not found.. Each 
of the developed prediction equations were examined for underlying assumptions and found to satisfy these 
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assumptions quite well. No meaningful prediction equations could be developed for the standard deviation (ܵ) 
and skew (݃), therefore the regional average values were used.  

Table 3: Average goodness-of-fit statistics for each drainage division 

Drainage Division Method R2 R2
Adj SEE DW 

VI  
QRT 0.801 0.797 0.920 1.867 
PRT 0.785 0.781 1.007 1.750 

VII 
QRT 0.907 0.883 0.562 2.266 
PRT 0.963 0.954 0.421 2.160 

VIII 
QRT 0.514 0.495 0.892 1.969 
PRT 0.568 0.551 0.860 1.886 

 

7 MEASURES OF PREDICTION ERROR 

The following statistics were adopted to compare the QRT and PRT: ܴܧܵܯ = ට∑൫ொ೛ೝ೐೏ିொ೚್ೞ൯మ௡ ݋݅ݐܴܽ	ܧܵܯܴ (27)    = ோெௌாொത೚್ೞ × ܧܴ (28)  100% = ொ೛ೝ೐೏ିொ೚್ೞொ೚್ೞ × ݋݅ݐܴܽ (29)  100% = ொ೛ೝ೐೏ொ೚್ೞ   (30) 

The Root Mean Squared Error (RMSE) ratio provides an indication as to the overall accuracy of the model, a 
value of zero indicates the model is perfect; however, large values are undesirable. Relative Error (RE) indicates 
the accuracy of each prediction in relation to the observed value, with a value of zero being perfect and can also 
be either positive or negative. The Qpred/Qobs ratio indicates the amount of bias and accuracy of the model. It 
should be noted that although the RMSE ratio and RE are not true measures of the error associated with a 
model, both values give a reasonable indication of the error associated with a model for practical purposes, as 
both ܳ௢௕௦ and ܳ௣௥௘ௗ have reasonably large uncertainties associated with them. 

8 SPLIT-SAMPLE VALIDATION 

Prediction equations for each region were validated using a number of independent test catchments. Statistics 
that were used to evaluate the performance of each model included the RMSE ratio, median RE and Qpred/Qobs 
ratio. The median RE and RMSE ratio results, for the three drainage divisions, are shown in Error! Reference 
source not found.. It can be seen that the QRT produces a lower RE for drainage divisions VI and VII, with RE 
values of 60% vs. 67% and 31% vs. 41% for the QRT and PRT, respectively. In contrast, the PRT produces a 
lower RE for drainage division VIII, with RE values of 56% vs. 61% for the PRT and QRT, respectively. The 
RMSE ratio for each of the drainage divisions can be seen to be lower for the PRT; however, there is only a 
0.3% difference between the PRT and QRT in drainage divisions VI and VII. 

Table 4: Relative error and Root mean squared error for Drainage Divisions VI, VII, and VII 

Drainage Division 
VI VII VIII 

Range Average Range Average Range Average 

Absolute 
Median RE % 

PRT 58 – 74 68 29 – 50 42 47 – 67 57 
QRT 53 – 73 61 28 – 37 31 52 – 79 62 

RMSE Ratio 
% 

PRT 10 – 13 11 4 – 10 7 6 – 13 9 
QRT 11 – 13 12 4 – 11 7 11 – 16 12 

9 CONCLUSIONS 

Prediction equations for the Quantile Regression Technique (QRT) and the Parameter Regression Technique 
(PRT) were developed for six flood quantiles (Q2 to Q100) in each of the three regions across WA. The final 
prediction equations for both methods contained two predictor variables, including catchment area and rainfall 
intensity of a given duration and ARI, which are easily obtainable from published data. Each of the developed 
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prediction equations satisfied the underlying assumptions of the OLS regression well, as the residuals are 
approximately normally distributed. Region 2 should be used with care, as the lack of sites made the statistics 
hard to interpret. Each model was found to produce reasonably high R2 and R2

Adj, with smaller SEE values. Both 
the QRT and PRT performed relatively well, based on the independent testing, however a small number of 
catchments produced estimates which were grossly above or below the at-site flood frequency estimates. 
However, it should be noted that at-site flood frequency estimates are not free of error and they have a large 
uncertainty range, for higher ARIs in particular. It should be noted that results from GLS regression for WA 
presented in Haddad et al. (2011a) are likely to be more reliable than this study. The findings from this study 
and other relevant RFFA studies would form the basis of recommendation of a new RFFA for WA in the 
upcoming edition of ARR.  
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