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Abstract: Water allocation models can be used to compare water sharing scenarios in regulated 
catchments to evaluate the effects on both the water users and the environment. These models include a 
representation of the physical system with modules such as flow routing, rainfall-runoff modelling or 
groundwater/surface water interactions, as well as management components to take into account 
infrastructure such as dams, canals or extraction points. Water allocation models can be complex modelling 
structures with a large number of parameters to be calibrated on limited datasets, especially regarding the 
management aspects. Additionally, these models are used as a tool in the making of long-term decisions 
with important social and environmental impacts. As a result, the assessment of uncertainty becomes a 
critical task to inform the decision-makers about the likely robustness of the model analysis and predictions. 

Calibration of these models is currently problematic. In particular, the errors affecting system observations 
are often not properly accounted for, which is a concern since these errors may be quite large. Furthermore, 
calibration is often performed separately on various components of the system, resulting in inconsistencies 
when the components are linked. These deficiencies make it difficult to quantify the uncertainty in the 
predictions of the entire system performance. 

The Bayesian approach provides a platform to directly address the sources of uncertainty (input, output, and 
model error) in the model calibration and prediction process. This study seeks to develop a Bayesian multi-
response method for use with river system models, allowing joint calibration to all sources of information 
available in a particular application. Unlike the traditional approach, joint calibration forces consistency in 
performance across the entire system. Moreover, the Bayesian approach provides a framework for a proper 
accounting of uncertainty both in the inferred parameters and in the model predictions. 

This study illustrates the application of the Bayesian multi-response calibration approach to the 
STICKMAN model, a simplified river system model which describes key aspects of complex river basin 
models such as IQQM but is computationally less demanding.  The model was calibrated using a Weighted 
Least Squares method in a synthetic data study.  Model calibration used both single and multiple response 
data (eg. streamflow at the outlet and at internal system nodes, reservoir time series, etc.) to investigate the 
improvements in parameter estimation associated with the inclusion of additional responses. 

The use of multiple response data during model calibration was generally found to reduce parameter 
uncertainty.  However, the extent of reductions in uncertainty depended on which responses were included, 
highlighting that some sources of data are more informative than others. This supports the findings of 
Kuczera and Mroczkowski’s (1998), who conclude that the value of new sources of response data should be 
assessed a priori before embarking on (potentially expensive) field campaigns. This study reports the first 
findings in this project. Future work will explore the effects of multiple response data on model predictive 
performance, further develop the STICKMAN model to better represent processes and errors, and finally 
consider IQQM case studies. 
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1. INTRODUCTION 

Water allocation models are used to compare water sharing scenarios in regulated catchments in terms of 
the impacts for the water users and the environment. These models include a representation of the physical 
system with modules such as flow routing, rainfall-runoff modelling or groundwater/surface water 
interactions, as well as management components to take into account infrastructure such as dams, canals or 
extraction points. Water allocation models can be complex modelling structures with a large number of 
parameters to be calibrated on limited datasets, especially regarding the management aspects. At the same 
time, water allocation models are used to aid in the making of long-term decisions with important social and 
environmental impacts. As a result, the assessment of uncertainty becomes a critical task to inform the 
decision makers about the strengths and weaknesses of the model. 

Calibration of these models is currently problematic. Errors affecting system observations are often not 
properly accounted for (and these errors may be quite large). Further, calibration is often performed 
separately on the sub-modules of the system, resulting in inconsistencies with the observed data when the 
sub-modules are linked. This makes it difficult to quantify the uncertainty in the predictions of the entire 
system performance. 

The Bayesian approach provides the opportunity to directly address the sources of uncertainty (input, 
output, and model error) in the model calibration process. While our previous work has applied Bayesian 
techniques to hydrologic models (Kavetski et al. 2002, 2006; Renard et al., 2010), this study seeks to 
develop a Bayesian multi-response method for use with a river system model.  This involves joint 
calibration to all sources of information, a process which entails fitting the parameters of the model 
simultaneously to all data. Unlike the traditional approach, joint calibration forces consistency in 
performance across the entire system. Moreover, joint calibration offers the well-established benefit of 
using multiple response data to better identify model parameters and structure (eg. Sorooshian and Gupta, 
1983; Kuczera and Mroczkowski 1998). Finally, the Bayesian approach offers the opportunity to allow 
proper accounting of uncertainty. 

In this paper, an initial implementation of the Bayesian joint calibration is demonstrated using a simple 
river system model named STICKMAN.  While there are numerous existing river system models, with 
IQQM (Hameed and Podger 2001) and Source River (Welsh et al. 2011) being prominent examples, the use 
of a simplified model provides a simple means to explore issues affecting parameter identifiability and 
predictive uncertainty in river basin models.  Model calibration is performed using multiple responses with 
a synthetic data study being used to evaluate model performance and improvements in parameter 
uncertainty associated with the inclusion of additional responses. 

2. STICKMAN MODEL 

2.1. Model description 

The initial investigations reported in this paper 
are based on a simplified river model. This 
avoids the heavy setup and computational 
burden of modelling more complex river 
networks (e.g. using tools such as IQQM or 
Source River). The simplified model is known 
as STICKMAN, with Figure 1 providing a 
schematic of the model.  In its final form, this 
model will be constructed to contain the 
majority of the features of more complex 
models, while being sufficiently efficient in a 
computational sense to enable systematic 
assessment of the issues affecting complex river basin models. 

The STICKMAN model consists of a reservoir and a number of reaches, several internal nodes, and an 
extraction and a release node. The reservoir inflow may be assumed to be gauged directly, or may be 
estimated using a rainfall-runoff model. The release from the reservoir enters the top of first river reach, 
with an extraction point located at the bottom of this reach — the extraction aims to meet, but not exceed, a 
known demand (say for cropping purposes). The second reach begins immediately below the extraction 
point and has a known environmental flow requirement at its outlet. 
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Figure 1. Schematic of the STICKMAN model. 
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In each river reach, it is assumed that rates of outflow and losses are linear functions of the stream storage, 
so that the rate of change of storage in the reach is 

Q L

dS
I Q L I k S k S

dt
= − − = − −  (1) 

where S is the stream storage (m3), I, Q, and L are rates of inflow, outflow, and losses (m3/s), and kQ and kL 
are storage and loss coefficients (1/s).   

Assuming constant reach properties, in particular a rectangular cross section in each reach, the coefficients 
(or time constants) can be reparameterised.  For the outflow: 

( / )

/

Q

Q

k S VA V S l

k V l

= =

=
 (2) 

where V is the reach velocity (m/s), A is the reach cross-sectional area (m2), and l is the reach length (m).   

For the loss: 

( ) ( ) ( / )SAT CON SAT SAT SAT SATL k A k lP k l A k l S l k Sβ β β= = = = =  (3) 

where kSAT is the saturated hydraulic conductivity (m/s), ACON is the streambed area in contact with water 
(m2), P is the wetted perimeter (m) and β is the inverse hydraulic radius (1/m), taken to be a constant.  Thus: 

L SATk k β=  (4) 

The reservoir inflow is either obtained from direct measurement (eg. from a stream gauge and rating curve) 
or is obtained through indirect means (eg. derived from rainfall-runoff model simulation).  Regardless of 
the way it is determined, the observed inflow is subject to errors. In many cases, we expect the observed 
inflow to be biased.  In the simplified model setup, this is represented by scaling the “observed” inflow time 
series by a constant, which becomes a calibrated parameter in the inference scheme. Thus, the observed 
inflow is corrected to obtain the “true” inflow: 

I OBSI k I=  (5) 

where I is the true (corrected) inflow, IOBS is the observed inflow and kI is a correction factor. 

In summary, the STICKMAN model consists of 5 parameters to be calibrated (V1, kSAT1, V2, kSAT2, and kI).  It 
also requires 4 reach characteristics to be defined (l1, β1, l2, and β2). 

2.2. Model algorithm and implementation 

The basic model algorithm over a single time step is: 

1. The corrected inflow given by equation (5) is added to the reservoir (updating its current volume, Vres). 
2. Choose a release, noting that the reservoir may spill or run dry. 
3. Route release through both river reaches. 
4. Check that demand and environmental flow constraints are met.  If all are met then stop.  Otherwise go 

to step 2 and iterate. 
 

Note that, at each time step, routing the release through the reaches requires solving the differential 
equation (DE) given by equation (1). This DE for the linear storage in each reach was solved numerically 
using the implicit (backward) Euler method. Implicit methods are preferred because they remain stable for 
any time step size Δt, while explicit methods suffer from potential instabilities and other computational 
weaknesses (Kavetski and Clark 2010). Note that in the current setup the DEs are linear and hence could be 
solved exactly. However, we favoured more general numerical approximations over specific analytical 
solutions because in the future we envisage using nonlinear representation of the flows in each reach (eg. 
making the losses a nonlinear function of storage), which would preclude analytical solutions. 

The algorithm was implemented in Fortran 95 and was solved using bisection to determine the optimal 
reservoir release to satisfy the constraints. 

3891



Micevski et al., Exploring the utility of multi-response calibration in river system modelling 

3. DATA 

The forcing data is derived from a 12-year period in the Namoi catchment in NSW. The reservoir inflow is 
an aggregation of multiple river tributaries (see Figure 2 for inflow time series). The demand time series 
was computed using the Namoi IQQM model and follows a seasonal pattern to reflect agricultural usage 
with a cycle of 8 months on and 4 months off, varying at a monthly scale.  The environmental flow 
requirement is set at a constant value of 0.2 m3/s. 

Synthetic data were generated such that the reservoir experiences periods of spilling and periods of 
extended drawdown (but never such that the reservoir runs dry) in a reasonably realistic manner (see Figure 
2).  The internal model states were recorded at 5 model “locations”: outflow qout, volume of reservoir vres, 
release rel, extraction ext, and intermediate flow before extraction q1.  These model states were selected 
because they should be measurable or estimable in a typical river system.   
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Figure 2. Time series of synthetic data for reservoir inflow (I; left-hand axis) and volume (vres; right-hand 
axis).  Note that reservoir capacity is 400×106 m3. 

3.1. Response data errors 

The synthetic data were corrupted with heteroscedastic noise, where the noise (ie. residual) was of the form: 

2; ' N( , )a bX X Xε εσ σ= + ←  (6) 

where σε is the standard deviation of the noise, a > 0 is a fixed offset (to prevent zero-sized errors for zero-
valued observations), b is the scaling factor applied to the observation X, and X’ is the corrupted 
observation.  The true model parameters used for the synthetic study are given in Table 1. 

4. CALIBRATION METHODOLOGY 

Model calibration is based on Bayesian multi-response inference. The advantage of Bayesian methods is 
that they provide a formal framework for describing the error processes affecting the various components of 
the model and observation systems and incorporating them into the calibration process: 

• Input errors: The input observation system is imperfect, so there will be uncertainty in the measured 
model input. For example, there may often only be a single raingauge within a catchment, so there will 
be uncertainty in the areal rainfall values over the entire catchment. 

• Output errors: The output observation system is imperfect, so there will be uncertainty in the true model 
output. For example, streamflow is often estimated using a rating curve and a flood may exceed the 
levels over which the rating curve was derived, resulting in uncertainty in streamflow values. 

• Model errors: The river system model is necessarily a simplification of a very complex system, so there 
will be considerable uncertainty due to simplifications and idealisations made within the model. 
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The primary objective of model calibration is to identify the model parameters given the observed time 
series, the observed forcing time series, and any prior information.  In the Bayesian context, this inference 
problem is described by a posterior pdf. Since the posterior may be difficult to characterize analytically, it is 
often approximated using Markov chain Monte Carlo methods (eg. Gelman et al. 1995). 

In this study the Bayesian multi-response formulation was expressed as follows: 

( | , , ) ( | , , ) ( | )p Q R M p Q R M p Mθ θ θ∝     (7) 

where Q is a matrix of observed response times series (corresponding to some combination of outflow 

qout, volume of reservoir vres, release rel, extraction ext, and intermediate flow before extraction q1 in 

Figure 1), R is a matrix of observed forcing (corresponding to IOBS in Figure 1), θ  is a vector of parameters 
of model M to be inferred (corresponding to the STICKMAN model parameters V1, kSAT1, V2, kSAT2, and kI 
and the response error model parameters a and b), ( | )p Mθ  is the prior pdf assigned to θ  describing 

what is known about the parameters before calibration, ( | , , )p Q R Mθ   is the likelihood function which 

describe the probability model used to generate the observed responses, ( | , , )p Q R Mθ    is the posterior 

pdf of the parameters conditioned on the observed data, the model and any available prior knowledge.  
Non-informative priors were used for all model parameters. 

The form of the likelihood function depends on the error models affecting the observed responses. In this 
synthetic study, the errors corrupting responses were sampled from independent, heteroscedastic Gaussian 
distributions given by the equation (6). Accordingly, the likelihood function takes the following weighted 
least squares (WLS) form (Kuczera and Mroczkowski 1998) 

2

2
1 1

1 1 ( , , )
( | , , ) exp

2 ( , , )2 ( ( , , ))

T K
kt kt

t k k k ktk k kt

Q Q R M
p Q R M

a b Q R Ma b Q R M

θθ
θπ θ= =

  −= −  ++    
∏∏

 
 



 (8) 

where the t and k subscripts refer to time and response indices respectively. 

5. CALIBRATION USING SYNTHETIC DATA 

The corrupted synthetic data were analysed using the BATEA toolkit software (Kavetski et al. 2006), which 
implements inference setups ranging from simple WLS schemes to complex hierarchical setups. In this 
work, the WLS method was used, with the weights for the individual observations derived from the inverse  
variances predicted using the residual error model (ie, exactly as in equation (8)). 

The first 800 days of data were used for calibration, with the remainder being saved for later prediction 
purposes (not shown).  Various combinations of the available responses (single and multiple) were analysed 
to determine the effect of multi-response calibration on parameter uncertainty.  Table 1 provides a summary 
of the analyses performed for five calibration scenarios. 

The table shows that the use of additional responses in the calibrations generally leads to reduced parameter 
uncertainty (ie. reductions in posterior standard deviation of the parameters). This is expected since the use 
of additional responses provides additional information to the parameter inference scheme. Moving from 1 
to 2 responses (from scenario A to scenario B or C) significantly reduces parameter uncertainty. It was 
found that adding the intermediate flow response (q1) as the second response resulted in a greater reduction 
in uncertainty than adding the reservoir volume (vres). It appears that this arises because the information 
provided by q1 (the flow at the outlet of reach 1) is much more informative about the overall “state” of 
reach 1 compared to that provided by vres (the reservoir volume upstream of reach 1). As such, q1 “sees” 
the loss in reach 1, while vres, being upstream of reach 1, has no information about the reach loss. 

Interestingly, scenarios C and D have effectively the same parameter uncertainty, even though C only uses 
2 responses while D uses 3 responses.  The responses qout and q1 are common to both, while scenario D 
adds vres.  In this case, the extra response (vres) provides no extra useful information about the system.  
This illustrates that using extra responses will not always lead to more precise parameter estimates — 
ideally the extra responses should be assessed a priori to ascertain whether they will significantly augment 
the information content of the calibration data (Kuczera and Mroczkowski, 1998, p. 1488). 
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Scenario E uses all 5 available responses and leads to a massive reduction in parameter uncertainty, even 
compared to the 3-response case (scenario D).  In this case, most of this improvement is due to the inclusion 
of the release response (rel).  The improvement is both a consequence of the relatively small noise applied 
to this response (see Table 1) and of the simplicity of the model — knowing the reservoir release allows the 
loss in reach 1 to be determined quite accurately, and in turn for reach 2. 

The single-response calibration to vres was investigated next. In this case, the calibrated response (vres) is 
upstream of both reaches, so we would not necessarily expect the model parameters to be well identified.  
However, Figure 3 shows that the parameters for reach 1 are, in fact, quite well identified (although the 
parameters for reach 2 are highly uncertain). This result suggests that knowledge of vres provides indirect 
knowledge of rel (and hence the flows entering reach 1). This illustrates that, even with limited data, it may 
be able to reasonably identify some (but not all) parameters of the model. 

Table 1. Summary of posterior mean and standard deviation of parameters for various calibration scenarios. 
STICK-
MAN 

parameter 

True value 
of 

transformed 
parameters 

Calibration scenario 

A  

1 response 

qout 

B  

2 responses 

qout+vres 

C  

2 responses 

qout+q1 

D  

3 responses 

qout+vres+q1 

E  

5 responses 

qout+vres+rel+ext+q1 

ln V1 (m/s) -1.204 -1.194 (0.260) -1.426 (0.140) -1.101 (0.096) -1.137 (0.105) -1.205 (0.004) 

ln kSAT1 
(m/s) 

-12.206 -12.801 (0.440) -12.469 (0.151) -12.120 (0.106) -12.126 (0.114) -12.209 (0.005) 

ln V2 (m/s) -0.916 -0.866 (0.217) -0.068 (0.165) -0.927 (0.099) -0.898 (0.100) -0.906 (0.016) 

ln kSAT2 
(m/s) 

-12.206 -11.899 (0.243) -11.987 (0.204) -12.224 (0.138) -12.232 (0.146) -12.190 (0.020) 

ln kI (-) 0.0 -0.017 (0.009) -0.002 (0.003) 0.000 (0.003) 0.001 (0.002) 0.000 (0.000) 

Error 
model 

      

ln a(qout) 0.0 -0.013 (0.033) -0.012 (0.033) -0.012 (0.032) -0.013 (0.032) -0.014 (0.032) 

ln b(qout) -1.204 -1.353 (0.096) -1.357 (0.093) -1.349 (0.094) -1.347 (0.092) -1.349 (0.085) 

ln a(vres) 12.206  10.605 (0.929)  10.645 (0.932) 10.625 (0.929) 

ln b(vres) -4.605  -4.593 (0.035)  -4.594 (0.034) -4.594 (0.033) 

ln a(rel) -3.219     -3.200 (0.057) 

ln b(rel) -4.605     -4.643 (0.068) 

ln a(ext) -3.912     -3.867 (0.043) 

ln b(ext) -2.303     -2.354 (0.033) 

ln a(q1) 0.0   0.010 (0.059) 0.010 (0.057) 0.013 (0.057) 

ln b(q1) -1.204   -1.224 (0.068) -1.223 (0.066) -1.229 (0.067) 

5.1. Discussion 

Additional work is needed for the STICKMAN model to become a closer approximation of real river 
system models (while remaining computationally efficient). Future enhancements include using a rainfall-
runoff model to estimate the reservoir inflows. This coupled model could then be calibrated jointly, by 
simultaneously estimating the parameters of the rainfall-runoff model and of STICKMAN. 

Lateral inflows downstream from the reservoir may also be added to make the model more representative of 
real-world scenarios. This may be achieved through adding an extra inflow between the two reaches or by 
coupling existing models together in the appropriate configuration. 

6. SUMMARY 

This paper demonstrated the use of Bayesian multi-response calibration approaches to a river system model.  
The approach was applied to the STICKMAN model, a simplified river system model which was 
introduced in the paper.  The model was calibrated using a Weighted Least Squares method in a synthetic 
data study.  Model calibration used both single and multiple response data to investigate the reductions in 
parameter uncertainty resulting from the inclusion of additional responses into the inference. 

The use of multiple response data during model calibration was generally found to reduce parameter 
uncertainty.  However, the reductions in uncertainty were variable, highlighting the fact that some sources 
of data are more informative than others. This provides further weight to Kuczera and Mroczkowski’s 
(1998) conclusion that the value of new sources of information should be assessed a priori before 
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embarking on a field campaign. This study reports the first findings in this project. Future work will explore 
the effects of multiple response data on model predictive performance, further develop the STICKMAN 
model to better represent processes and errors, and finally consider IQQM case studies.  The approach is 
general and independent of the river-system model. We expect it can be applied to river system models with 
a large number of responses and parameters — in other studies we have calibrated hierarchical models with 
hundereds of parameters using the BATEA toolkit software. 
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Figure 3. Marginal posterior density plot for reach 1 parameters for single-response calibration to vres.  
True parameter values are V1 = -1.2 and kSAT1 = -12.2. 
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