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Abstract: Mapping of groundwater level observations often makes very little use of auxiliary data and is 

often undertaken simply by manual interpolation or ordinary kriging of the heads. Recently, a number of 

geostatistical methods have emerged that significantly improve estimates by incorporating the land surface 

elevation and groundwater flow or drawdown equations. However, at the regional scale heads are influenced 

by numerous other factors that cannot be considered by these methods. Such factors include the land cover 

type, aquifer basement elevation and upper limits to the heads (such as the land surface). Furthermore, all 

existing methods fail to include observation uncertainty; produce poor measures of prediction uncertainty; 

and assume the random field to be multi-Gaussian; that is, the spatial correlation in heads are independent of 

the head magnitude. To overcome these limitations and to make better use of the observation data, this paper 

presents a novel indicator geostatistical simulation method for mapping unconfined heads. The simulation 

method produces many equally probable maps and by post-processing produces quantitative uncertainty 

maps.  Other post-processing could produce new products such as the probability of a stream having a 

gaining or losing hydraulic gradient and, if multiple time points are mapped, probabilistic changes in storage. 

To demonstrate the methodology, this paper presents an application for the Broken catchment, Victoria. 

The method combines a multi-variate version of kriging with external drift (KED) and a modified Markov-

Bayes indicator simulation algorithm to facilitate inclusion of physical constrains to groundwater head and 

soft data such as landuse. The KED facilitates inclusion of continuous variables that are linearly correlated 

with head and is used to produce a surface that results from these variables alone. As the difference between 

this surface and the observations were found to be spatially correlated, and approximately first and second 

order stationary, the head estimate was able to be refined using indicator kriging (IK) simulations.  While IK 

was essential for inclusion of the land class data and the groundwater head constraints, it also allowed the 

spatial correlation to vary with the magnitude of the heads. In effect this means it relaxes an assumption 

required for multi-Gaussian methods such as sequential Gaussian simulations. The entire methodology was 

implemented within the R statistics package using the Gstat library and modified GSLib algorithms. The 

source code will be made publicly available with a forthcoming journal paper. 

The study area comprised of both the Broken River and Broken Creek catchments with a 20 kilometre buffer 

to minimise boundary artefacts. Groundwater observations comprised of data from The Department of 

Primary Industries, Victoria; The Department of Sustainability and Environment, Victoria; and Department 

of Water and Energy, NSW. Importantly, the land class was found to be statistically important in estimating 

heads and the spatial correlation was not multi-Gaussian, thus challenging the use of standard kriging 

methods. All simulation head maps honoured all of the constraints. However, because of large nugget values 

and observations not located at the centre of grid cells, grid cells estimates can differ from observed water 

levels. Despite this implementation issue, overall the methodology produced highly plausible water table 

maps that increase the information extracted from observation bores by use of a very wide range of 

quantitative and qualitative spatial data. 
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1. INTRODUCTION 

Mapping of groundwater level observations often makes very little use of auxiliary data and is often 

undertaken simply by manual interpolation or ordinary kriging of the heads (Kumar & Ahmed 2003). 

Recently, a number of geostatistical methods have emerged that significantly improve estimates by 

incorporating the land surface elevation (Desbarats et al. 2002, Peterson et al. 2003) and groundwater flow or 

drawdown equations (Peeters et al. 2010, Tonkin & Larson 2002). However, at the regional scale heads are 

influenced by numerous other factors that cannot be considered by these methods. Such factors include the 

land cover type, surface water bodies, geological structures and upper and lower limits to the heads such as 

the aquifer basement elevation and the land surface. Furthermore, all existing methods fail to include 

observation uncertainty; produce poor measures of prediction uncertainty; and assume the random field to be 

multi-Gaussian; that is, the spatial correlation in heads are independent of the head magnitude. To overcome 

these limitations and to make better use of the observation data, this paper presents a novel indicator 

geostatistical simulation method (simulation methods produces many realisations of equally probable maps) 

for mapping unconfined heads and presents an application for the Broken catchment, Victoria. While not the 

first simulation method for water table mapping (Peterson & Barnett. 2004), it is the first to: (i) utilise 

categorical predictors such as land cover or stratigraphy; (ii) allow non-Gaussian spatial correlations; and (iii) 

utilise spatially explicit hydrogeology knowledge by input or omission of constraints on the heads. By post-

processing the simulation maps, new map can be derived such as the quantitative uncertainty, probability of a 

stream having a gaining or losing hydraulic gradient and, if multiple time points are mapped and the specific 

yield is estimated, the probabilistic changes in storage.  

2. HYDROGEOLOGY OF THE BROKEN CATCHMENT 

Three major aquifer systems dominate the Broken Catchment– the bedrock, Calivil/Renmark and Shepparton 

Formation aquifer systems. There are also some localised aquifer systems occurring in colluvium associated 

bedrock in uplands. All of these are interconnected to varying degrees and may be in direct contact or they 

may be separated by units of low hydraulic conductivity.  While perched water tables are likely to exist, is 

this study the water table has been conceptualized as existing within the bedrock and the Shepparton 

Formation. The Shepparton Formation covers most of the Riverine Plain and the sand beds in the formation 

form important aquifers in many areas. They tend to be highly irregular in their shape and distribution and, as 

a consequence, it is difficult to predict their occurrence. The size and number of aquifers varies from one area 

to another.  Although sand beds tend to occur more frequently at certain depths, they can be considered as 

being randomly distributed vertically and horizontally. The bedrock outcrops in the upland area and is buried 

by the unconsolidated alluvial sediment on the riverine plain. In the west of the catchment, particularly gently 

undulating hills close to the Riverine Plain, the bedrock is highly weathered, often to depths of 50m or more. 

The non-weathered sedimentary and volcanic rocks form the major aquifers.  

3. METHODS 

3.1. Geostatistical Algorithms 

The water table surface is the product of a wide range of deterministic (e.g. topography and geology) and 

stochastic drivers (e.g. climate and land use). This geostatistical algorithm aims to use this information to 

significantly improve the regional scale mapping of the water table and to quantify its spatial uncertainty. It 

uses a multi-variate version of kriging with external drift (KED) to incorporate external drivers that are 

linearly correlated with head, for example land surface elevation. The component of the head not resulting 

from these external drivers was then interpolated using indicator kriging methods (IK) (Journel & Alabert 

1989). Standard IK methods contribute to the above aims as they allow inclusion of categorical land classes, 

such as land cover or stratigraphy units, using a Markov-Bayes methodology, but also allow the spatial 

correlation to change with the head (Goovaerts 1997). In effect the latter relaxes statistical assumptions 

required for multi-Gaussian methods such as sequential Gaussian simulations. More importantly, IK allowed 

development of a novel algorithm to incorporate physical constraints (or lack of) on the head, such as the 

land surface elevation or aquifer basement elevation. Overall the new methodology facilitates inclusion of a 

considerable amount of prior hydrogeological knowledge into the mapping. The entire methodology was 

implemented within the R statistics package using the Gstat (Pebesma 2004) and GSLib (Deutsch & Journel 

1998) modified to include the constraints. Below is a summary of the major steps of the methodology.  
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Kriging with External Drift (KED) 

The first step was to approximate the component of the head not resulting from the external drivers in order 

to develop the model variograms for the KED step. This was undertaken by developing a weighted linear 

regression model between external drivers and the head. While multiple drivers can be included, herein only 

land surface elevation was used. The regression weights were included in the model to account for the 

location of the observation. The residual heads from this relationship were then calculated and found to be 

first order globally stationary. These residuals approximated the head not resulting from the external drivers.  

The second step was to map the component of the head resulting from only the external drivers and to 

calculate the difference to the observed water levels. Firstly, an experimental anisotropic variogram was 

derived for the above regression residuals and a model was fit. In fitting the model, the nugget was estimated 

from the observation and location errors and the temporal averaging undertaken to derive a water level data 

point. Next, using this model, KED mapping was undertaken to produce a water table map. Herein, only the 

DTM was used. Lastly, a second KED map was produced that estimates the DTM related component to the 

heads. Importantly, because the difference between this surface and the observed heads were found to be 

spatially correlated and near stationary, the mapping could be refined using indicator kriging simulations. 

Constrained Sequential Indicator Simulations 

The third step was to derive realisations of head that incorporate the KED external drivers plus categorical 

land classes and the upper and lower physical constraints.  The first of four sub-steps was the assignment of 

indicator thresholds to adequately characterise the empirical cumulative density function (CDF).  For this 

application, seven indicators were adopted at the following percentiles:0.05, 0.1, 0.25, 0.5, 0.75, 0.9 and 0.95.  

The second sub-step was the fitting of model indicator variograms at each of the seven thresholds. For each 

threshold, a variogram map was first derived to identify anisotropic spatial correlations or a direction of 

minimal non-stationarity. Next, an experimental anisotropic variogram was derived and then a model 

variogram was fit using a least squares Newtonian fitting algorithm with well considered initial estimates. 

The third sub-step was the inclusion of landscape class as a prior predictor of head using the Markov-Bayes 

algorithm (Goovaerts 1997). An appealing aspect of this algorithm over others (e.g. collocated indicator 

cokriging) is that additional indicator variograms are not derived for each landscape class nor for the cross 

correlations with the residuals. It was implemented by: (i) calculating the CDF of the residuals for each land 

use; (ii) estimating prior probabilities for each land type using the previous CDFs and extracting probabilities 

at the indicator thresholds; (iii) assessing the significance of the prior probabilities by calculating the change 

in the mean prior probabilities when partitioned into above and below a given indicator threshold.   

The forth sub-step was the indicator simulation. A features of many geostatistical simulation methods 

(excluding annealing) is that grid cells for estimation are randomly chosen and input point data is sourced 

from both local observations and local prior cell estimates. A conditional distribution is then derived using 

the prior estimates and is randomly sampled to obtain a grid cell estimate. Repeating the mapping with a 

different sequence of cells produces different realisations, each conditioned by the observation data. A key 

contribution of this paper is the inclusion of upper and lower constraints or no constraint on the head. Figure 

1 summarises the three scenarios of: interpolating the CDF with an upper constraint; extrapolating the CDF 

with an upper constraint at the cell; and extrapolating the CDF with no upper constraint at the cell. The first 

scenario is achieved by shifting the upper CDF probability to 1.0 during kriging of the CDF and, when 

sampling the CDF, the interpolation is between the lower value and the upper constraint. The constrained 

extrapolation scenario is achieved simply by linearly extrapolating between the upper probability and the 

constraint set to a probability of 1.0. The unconstrained extrapolation scenario is achieved by estimating the 

slope between the two upper most probabilities and extrapolating to a probability of 1.0. 

3.2. Input Data 

Groundwater observation data was compiled using a Victorian groundwater database built for this project. It 

aggregates databases provided by The Department of Sustainability and Environment (DSE), Victoria; The 

Department of Primary Industries (DPI),Victoria; and The Department of Water and Energy (DWE), NSW.  
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Figure 1. Diagrams how an upper constraint was incorporated into the indicator simulations.  

Questionable water level observations were removed using three iterations of an exponential moving average 

filter. Importantly, the bores used in the mapping should only be monitoring the watertable, and not the 

deeper aquifers. This is difficult to estimate but was approximated using GIS stratigraphy layers and bore 

depth. Following detailed hydrogeological review of the data, the mean head for summer 2008 was derived 

for each bore. All heads were relative to the elevation from the VicMap 20m DTM and the vertical flow was 

assumed sufficiently small that the head equalled the water table elevation. At locations not denoted as 

bedrock, the lower constraint to the heads was the Shepparton Formation basement. The upper constraint was 

the land surface elevation except at major water bodies (form VicMap-HYDRO reaches classed as ‘medium’ 

or ‘high’). Australian Bureau of Rural Sciences (BRS) land class was adopted as the categorical land type. 

3.3. Implementation 

The study area comprised of both the Broken River and Broken Creek catchments with a 20 kilometre buffer 

to minimise boundary artefacts. Twenty indicator simulation realisations were derived using the closest 100 

observations points and 50 prior cell estimates within a maximum search radius of 120 km. The realisations 

were then post processed to the mean depth to water table and standard deviation in the head estimate. The 

number of realisations was limited to only 20 because of computational constraints. This will produce some 

uncertainty in the mean and standard deviation and future applications aim to derive 100 realisations. 

4. RESULTS 

The regression model between head and land elevation produced a coefficient of determination of 0.98. The 

residuals from this model were then used to derive the KED anisotropic residual variogram model in Figure 

2. Two correlation scales were observed (less than 2 km and less than 40 km). The fine scale correlation was 

isotropic and incorporated into the larger scale variogram by rescaling the total sill to the experimental 

nugget of the large scale variogram. 

Using the KED variogram, the KED 

residuals were estimated and are 

summarised in Figure 3. It also details the 

seven thresholds values and maps of the 

indicator values at four thresholds. For 

each of these thresholds, indicator 

variogram maps and variograms were 

derived (Figure 4). Importantly, the 

variogram range appeara to decline as the 

absolute threshold value declined. To 

illustrate the basis for the inclusion of land 

class, Figure 5 shows the CDFs for dryland and irrigated regions. They differ most significantly at the 5
th

 

10
th

, 90
th

, and 95
th

 threshold percentiles. 

Figure 6 presents maps of the mean depth to water table and standard deviation from the 20 realisations. It 

also details the input constraint layers, the BRS land use and a cross section of heads. The map of mean depth 

to water table clearly shows the influence of the lower constraint layer. Near to Lake Mokoan the water table 

was estimated as significantly deeper at regions without a lower head boundary. With respect to the upper 

constraint, the depth to water table was below the land surface at all locations with an upper constraint 

(which equalled the land surface elevation). This could not have been achieved using kriging methods. At  

 

Figure 2. KED fine scale (left) and regional scale (right) 

experimental and model residual variograms. 
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 indicator thresholds.  

  

  

Figure 3. Indicator thresholds and the spatial distribution from four thresholds where ● depicts an indicator 

value of zero and ● of one (top left: 5
th

 percentile (residual<-13.156); top right: 50
th

 percentile (residual<-

1.902); bottom left: 75
th

 percentile (residual<0.541); bottom right: 95
th

 percentile (residual<10.373). 

  

Figure 4. Isotropic variograms at the 5
th

, 10
th

, 25
th

 and 50
th

 percentile indicator thresholds. 

locations without an upper constraint, such as along the Goulburn River, the influence on the mean water 

table depth is less apparent than for omission of the lower constraint. One of the few clear influences is the 

large artesian area near to Yambuna. The omission of the upper constraint, and to a lesser degree the lower 

constraint, does however significantly increase the local uncertainty in the head. This is most apparent near to 

Honeysuckle Creek. By induction, inclusion of either constraint reduces the estimated local uncertainty. 

To assess the realisations in 

more detail, Figure 6f presents 

cross-sections containing all 20 

simulations. It shows the 

distribution of realisations at a 

given location to be negatively 

skewed toward a lower 

elevation, most likely as a result 

of the upper constraint limiting 

the positive tail of the 

distribution. It also shows that 

across the cross-section the 

variance is fairly uniform. Even at the Broken Creek (depression on lower inset plot) the variance is 

comparable.  Figure 6f also presents a comparison of the realisations against head observations. It shows 

observed heads are within the envelope of realisations but many realisations do not honour the observations. 

However, observations that are located at the centre of a grid cell (those in Figure 6f are not centred) are 

honoured by all realisations. When an observation is not centred within the grid cell, a large indicator 

variogram nugget (and possible the very short range of some variograms) can cause the cell estimate to 

quickly deviate from the observation. 

(a) Dryland agricultural lands. 
 

(b) Irrigated agricultural lands. 

Figure 5. Empirical cumulative probability functions of KED residuals 

disaggregated by land class. 
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(A) Upper Constraint (land surface elevation). (B) Lower Constraint (Shepparton Formation) 

(C) BRS land classes. (D) Mean depth to water table (20 realisations), head 

observations and cross section line A-B. 

(E) Standard deviation in depth to water table. 
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(F) Cross-section of realisation heads (grey); median 

head (red); 10
th

 and 90
th

 percentiles (light blue); land 

surface (brown); and observed head where the lower 

extent of the blue vertical line denotes the head. 

Figure 6. Spatial inputs (Figs. A to C); post-processed results (Figs. D and E): and cross sections (Fig. F);  
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5. DISCUSSION AND CONCLUSION 

This paper outlined a novel approach that advances the mapping of unconfined heads by incorporating a wide 

range of secondary data, specifically: surface elevation, land class and upper and lower head constraints. The 

head constraints were found to eliminate unrealistic artesian values, inform the influence of bedrock regions 

and major water bodies and reduce the local error estimates. However, as the distribution of realisations at a 

location appears to be non-normal it is concluded than non-parametric measures of uncertainty, such as the 

interquartile range, should be adopted instead of the standard deviation. With respect to the land class, it 

resulted in clear statistical differences in the departure from the topographic estimate of head. However, its 

influence should be more thoroughly quantified by undertaking simulations without its inclusion. 

The indicator variograms suggest an increasing spatial correlation with increasing departure from the 

topographic estimate of head. If the observed residual heads were sampled from a multi-Gaussian random 

field, then the indicator variogram range would be at a maximum for the 50
th

 percentile threshold and 

decrease toward the upper and lower percentiles (Gómez-Hernández & Wen 1998, Western et al. 1998). It is 

therefore concluded that unconfined heads are not multi-Gaussian and that indicator simulation methods 

should be adopted. Adoption of multi-Gaussian methods, such as sequential Gaussian simulation (Deutsch & 

Journel 1998), would result in poor estimation of extreme heads such as groundwater mounds and sinks. 

Additionally, only indicator methods would facilitate the inclusion of uncertainty in the observations. 

Finally, in applying these methods consideration should be given as to whether a grid cell head estimate 

should honour an observation not at the centre of a cell. If so, then the nugget for each indicator variogram 

should be set to a near-zero fraction of the total sill and, if the variogram range is small, consideration should 

be given to shifting observations to the centre of cells. 
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