
Picking Items for Experimental Sets: Measures of
Similarity and Methods for Optimisation

N. Boland a, R. Bunder a, A. Heathcote b

aSchool of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW, 2308
bSchool of Psychology, University of Newcastle, Callaghan, NSW, 2308

Email: Rachel.Bunder@uon.edu.au

Abstract:

Experimental psychologists often conduct experiments in which subjects are exposed to sets of stimuli. For
example, human subjects may be shown a sequence of written words, and their response times recorded in
order to understand the effect of one attribute, such as the frequency of the word in spoken language, on
human response time. The psychologists designing the experiment will construct several sets of words so that
each set contains only words within a specified range of frequencies in the spoken language. To reduce the
risk of bias in the experiment, the psychologists would like each set of words selected to be similar in terms of
other confounding attributes that could affect response time, such as the number of letters in the word, or the
number of syllables. A challenge for the psychologists is that the sets they select may need to contain many
words, the words may be selected from a set of thousands, and a large number of potentially confounding
attributes may need to be considered. This daunting task, which we dub the problem of Picking Items for
Experimental Sets (PIES), is usually performed manually by experimental psychologists.

To assist in this task, both metaheuristic and mixed integer programming (MIP) approaches have recently been
developed. Such automated approaches require a systematic definition of “similarity” of sets; the degree to
which sets of items are similar with respect to some attribute can no longer be assessed objectively by the
psychologist designing the experiment(Forster, 2000). To illustrate this issue, consider two sets of words, B1

and B2, where B1, B2 ⊆W , the set of words available for selection, and the attribute given by the number of
letters in each word. For each word w ∈ W , let fwl denote the number of letters, l, in word w. One approach
to measuring the similarity of the two sets is to compare the average value of the attribute across the sets, i.e.
measure based on the difference | 1

|B1|
∑

w∈B1
fwl − 1

|B2|
∑

w∈B2
fwl|. However it is well known that very

different distributions can have the same average value. For example, defining the attribute value count vectors
ηBic = |{w ∈ Bi : fwl = c}| for each i = 1, 2 and each positive integer value c that could be the length
of a word, say ranging from 1 to 5 letters. This approach would consider two sets with ηB1

= (3, 3, 3, 3, 3)
and ηB2 = (0, 0, 15, 0, 0) to be very similar, whereas clearly the experience of a human subject to these two
sets might be very different: the former has an even spread of word lengths whereas the latter has all words of
identical length. The existing metaheuristics address this issue by using group characteristics, such as average
or standard deviation, which take into account the relative values of the heuristics. However, as we have shown,
these group characteristics do not adequately measure the similarity of the sets.

Recent MIP approaches measure similarity between sets using the entire histogram, i.e. they measure based
on the difference |ηB1c − ηB2c| for each c. Whilst this provides a richer measure of similarity than simple
averages, it does not take into account the relationships between attribute values. To return to the word length
illustration, the length count vectors (0, 3, 3, 3, 6) and (3, 4, 5, 0, 3) are “equally” different from (3, 3, 3, 3, 3)
component-wise. But it is common sense that words of length 2 or 3 are more similar to words of length 4
than words of length 1 are to words of length 5, so the vector (0, 3, 3, 3, 6) “replacing” three words of length
1 with three of length 5 is less similar to (3, 3, 3, 3, 3) than is (3, 4, 5, 0, 3), which “replaces” three words of
length 4 with two of length 3 and one of length 2. The component-wise histogram measure does not take into
account similarities and differences between attribute values.

This paper briefly reviews the existing approaches to automate picking items for experimental sets, and then
discusses new MIP approaches that address the entire distribution of attribute values across sets while also
taking into account the relationships between attribute values. Numerical results on psycholinguistic data sets
are analysed, and the alternative approaches compared.

Keywords: Mixed integer programming, Stimulus selection, Factorial designs, Experimental psychology

20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013
www.mssanz.org.au/modsim2013

3274

N. Boland et al., Picking Items for Experimental Sets: Measures of Similarity and Methods for Optimisation

1 BACKGROUND

The ability to create matching experimental sets is needed by many different researchers. There have been three
main attempts to produce an automated approach to solving PIES in recent years: Stochastic Optimization of
Stimuli (SOS)(Armstrong et al., 2012), Match (Van Casteren et al., 2007) and a mixed integer programming
approach (Boland et al., 2013).

SOS is a flexible approach that uses simulated annealing and to find solutions for PIES and statistical tests to
evaluate how near optimal these solutions are. As well as selecting matching items, in both a groupwise and
pairwise manner, it allows for many different relationships between lists, such as maximising the difference
between attributes or matching attribute values to a given distribution.

To do this, SOS uses both hard and soft constraints to determine which items should be selected. Hard con-
straints are constraints that need to be met. For example, a hard constraint can be used to ensure that in one
list, there are no items with low value for frequency. Soft constrains are used to define relations between lists
that ideally should be met. For example, soft constraints can be used to match two lists on a given attribute,
match a selection’s attribute value to a given distribution or to maximise the difference between two lists. For
each soft constraint there exists a penalty function. SOS aims to reduce the total sum of the penalty functions.

The penalty function for matching two lists on a given attribute uses a Minkowski norm (p-norm) to determine
how similar the selections’ are. We let fBa be a vector containing all the attribute values for attribute a in listB
and wa be some weight applying to the attribute. SOS uses a measure,M, either the average or the standard
deviation to measure the similarity of the lists, before applying the Minkowski norm. The penalty function for
groupwise matching first applies the measure to each chosen list before taking the squared difference, that is,
wa|M(fBa)−M(fB

′

a)|p, hence it is only comparing the measure of the two lists. Conversely pairwise aims to
match pairs by taking the difference of the two sets’ items’ attributes, then applying some measure and taking
the norm. The penalty function is given by wa

k (
∑k

i=1 |M(fBai − fB
′

ai)|)p.

Match uses a depth first tree selection to find optimal solutions using pairwise matching. In order to find
matching sets, Match finds tuples of matching items, one item taken from each lists. Match continues to find
matching tuples until there are enough items selected. It then proceeds to backtrack in order to try and find
better solutions. If the current tuple selection produces a solution worse than the current known best solution,
Match will abandon the current selection and backtrack until it finds a better option.

The similarity of a tuple of items is measured by using the Euclidean distance over each of the items’ attributes.
For example a tuple might have two items, whose attribute vectors are (1, 2, 3) and (2, 2, 3). The similarity
value of this tuple would be (|(1, 2, 3)− (2, 2, 3)|)2 = 1. The total measure of all the items currently selected
is given by the sum of all the tuples’ similarity values.

Lastly, Boland et al. (2013) describe an approach to solving PIES using Mixed Integer Programming (MIP).
This approach uses a variation on groupwise matching to define similarity. However, rather than use group
characteristics such as average or standard deviation, this approach aims to match the histogram for each
attribute in the lists, i.e. the same number of items in each list and attribute value. This MIP approach uses
the `1 and `2 norms to compare solutions. In addition to these, there is an option to compare each attribute
count to the overall average count for that attribute value, or compare pairs of attribute value counts. For
example, consider the selection of words in Figure 1 being matched over the number of syllables in each
word, S. For this selection, the average number of words with one and two syllables is 2 and 3 respectively.
When comparing the histograms, there are two choices: compare each list’s count to the average count or
compare each pair of lists’ counts. Using the `2 norm and averages to compare the number of words with
one syllable gives (3 − 2)2 + (2 − 2)2 + (1 − 2)2 = 2. In this case using `1 and averages would produce
the same result. However, if we compare using pairs, `1 gives |3 − 2| + |3 − 1| + |2 − 1| = 4 and `2 gives
(3 − 2)2 + (3 − 1)2 + (2 − 1)2 = 6. The MIP approach allows the researcher to choose whether to match
using pairs, averages and `1 and `2.

The attributes which PIES are to match over are called soft attributes. This approach also allows for hard
attributes. For each hard attribute value, the researcher specifies how many items with that value should be
selected from each list.

Each SOS, Match and the MIP approaches allows for similar sets to be created. SOS offers the greatest
flexibility in defining the relationships between the sets, yet does not give a guaranteed optimal solution. Match
has the capability of giving an optimal solution, but it needs to search an entire solution tree which takes an
extremely long time. Additionally, it gives no indication of the optimality of the intermediate solutions. The

3275

N. Boland et al., Picking Items for Experimental Sets: Measures of Similarity and Methods for Optimisation

List 1 List 2 List 3

Item S Item S Item S
Fawn 1 Doubts 1 Lurks 1

Crumpled 2 Yellow 2 Tamping 2
Flour 1 Hath 1 Spiders 2

Spiders 2 Hanging 2 Rampant 2
Huffs 1 Muffling 2 Captain 2

Figure 1. Example words

0

1

2

3

4

5

1 2

List 1

List 2

List 3

Average

Figure 2. Histogram for Table 1, including the
average attribute count

MIP approach produces superior results in a shorter amount of time when compared to SOS and Match.
However, it does not allow for the flexibility that SOS does when defining relations between lists and can
struggle with data sets that contain many hundreds of attributes. Also, due to the discrete nature of histograms,
it considers a word with four syllables as equally similar to a word with five syllables as to a word with seven
syllables. It is this last shortcoming we are aiming to resolve in this paper.

2 PROBLEM DEFINITION

We consider a problem in which we have a set of items, W , from which a subset needs to be selected. For
example, this set could be 20,000 words to be used in an identification task or a group of volunteers in a
medical study. The set of all items is partitioned into different lists of items. The set of all lists is given by B,
such that ∪B∈BB = B and B ∩B′ = ∅ for all B,B′ ∈ B, B 6= B′.

Each item has a value for each of a set of attributes, A. The value for attribute a for item w is given by fwa.
For example, a word may have the number of syllables or the average age it is learnt as an attribute. If a is the
number of syllables and w is banana we say that fwa = 3. The set of all attribute values for an attribute a is
given by Ca = {fwa : w ∈W}.
There are two types of attributes: a single hard attributes, h and a set of soft attributes, S. For the hard
attribute, the researcher can specify how many items with a particular value are to be chosen from each list, as
given in Equation 1k. For example, if the hard attribute is the number of letters in a word, the researcher may
decide that each list should have five words with four letters, and three words with five letters. Thus, the hard
attribute is used to define how many items are to be selected from each list. Soft attributes are the attributes
that the selected lists should be matched over.

The problem is to select (or pick) items so that the items selected from each list are as similar as possible in
terms of the items’ soft attributes. We have defined similarity as how well each list’s histograms match for each
attribute (Boland et al., 2013). We let ηBac be the count of selected items in list B with value c for attribute a
and ηac be the average count of items per list. The constraints that define a and ηac are given in Equations 1i
and 1j.

Similarity can be defined in a variety of ways: by comparing each count to the average count or by comparing
each pair of counts. Both of these techniques can be used in conjunction with the `1 (linear) and `2 (quad)
norms. The measures for average-linear (HAL), average-quad (HAQ), pair-linear (HPL) and pair-quad (HPQ)
are given in Equations 1a, 1d, 1e and 1h. In each case, as we are considering each soft attribute and attribute
value separately, we will sum the similarity measure over each of these values to give us the objective value.

Using these as a definition of similarity has its shortfalls, in particular with attributes whose values have
order. Consider four lists of words being matched over the number of syllables, s. Let the vector
(ηB1s1, ηB1s2, ηB1s3) denote the number of items with each syllable count. Using histograms, the vectors
(5, 0, 0) and (0, 5, 0) are considered just as dissimilar as (5, 0, 0) and (0, 0, 5). However, most would consider
the former more similar as one syllable words are more like two syllable words than they are to three. Hence,
our problem is to find a measure of similarity for sets when their attributes values have some inherent ordering.

3276

N. Boland et al., Picking Items for Experimental Sets: Measures of Similarity and Methods for Optimisation

min
∑
B∈B

∑
s∈S

∑
c∈Cs

dBsc (1a)

s.t. dBsc ≤ ηBsc − ηsc ∀B ∈ B,∀s ∈ S, ∀c ∈ Cs (1b)
dBsc ≤ ηsc − ηBsc ∀B ∈ B,∀s ∈ S, ∀c ∈ Cs (1c)

min
∑
B∈B

∑
s∈S

∑
c∈Cs

(ηBsc − ηac)2 (1d)

min
∑

B,B′∈B

∑
s∈S

∑
c∈Cs

dBB′sc (1e)

s.t. dBB′sc ≤ ηBsc − ηB′sc ∀B,B′ ∈ B,∀s ∈ S, ∀c ∈ Cs (1f)
dBB′sc ≤ ηB′sc − ηBsc ∀B,B′ ∈ B,∀s ∈ S, ∀c ∈ Cs (1g)

min
∑

B,B′∈B

∑
s∈S

∑
c∈Cs

(ηBsc − ηB′ac)
2 (1h)

ηBsc =
∑
w∈B
fws≤c

xw, ∀B ∈ B,∀s ∈ S, ∀c ∈ Cs (1i)

ηsc =
1

|B|
∑
B∈B

kBsc, ∀s ∈ S, ∀c ∈ Cs (1j)

hBc =
∑
w∈B
fwh=c

xw ∀B ∈ B,∀c ∈ Ch (1k)

3 MEASURES OF SIMILARITY

Creating a measure based on histograms that allows for continuous values is problematic. Simply grouping
together attribute values and adding these groups as additional attributes will produce results biased towards
some of the attribute values. For instance, for some vector of attribute value counts (ηBs1, ηBs2, ηBs3, ηBs4),
as well as matching these counts, we would also match (ηBs1 + ηBs2, ηBs2 + ηBs3, ηBs3 + ηBs4).

Using a grouping like this means that each attribute value will contribute to two pairs of values, with the
exception of the extreme attribute values. This will create a bias towards matching the middle values, as they
have more representation in the pairs. To counterbalance this bias, we could have an additional pair for each
of the extreme values. Nevertheless, this will now create a bias towards matching the extreme values.

Instead, we propose the use of the cumulative histogram, e.g., instead of trying to match the count of each
individual attribute value, match the cumulative count of attribute values. As with the previous histogram
approach, we will use four different variations for cumulative histogram: pairs-quadratic (CPQ), pairs-linear
(CPL), average-quadratic (CAQ) and average-linear (CAL).

Rather than aiming to match each attribute value, matching using a cumulative histogram aims to “even up”
any discrepancy in the counts as quickly as possible. Specifically, consider the histograms in Figures 3 and 5.
For this case the former lists would be considered more similar compared to the latter. Yet, when we consider
the same values, but instead as a cumulative histograms, given in Figures 4 and 6 respectively, the later is
considered more similar as the differences in count for values 1 and 3 are corrected for in the subsequent
attribute values.

Unlike grouping similar values, this measure suffers no discernible bias towards particular attribute values.
This issue with using cumulative histograms comes when an attribute’s values are not evenly spaced. For
instance, consider Ca = {1, 2, 3, 10} for some attribute a. As it has been presented, using the cumulative
histogram in this case would consider 3 and 10 to be just as similar as 2 and 3. Moreover, consider the
frequency attribute for words. In the database provided in the SOS examples, the most frequent word is the

3277

N. Boland et al., Picking Items for Experimental Sets: Measures of Similarity and Methods for Optimisation

0

2

4

6

8

1 2 3 4

It
e

m
 C

o
u

n
t

Attribute Value

List 3

List 4

Figure 3. Histogram 1

0

2

4

6

8

1 2 3 4

C
u

m
u

la
ti

ve
 C

o
u

n
t

Attribute Value

List 3

List 4

Figure 4. Cumulative Histogram 1

0

2

4

6

8

1 2 3 4

It
e

m
 C

o
u

n
t

Attribute Value

List 1

List 2

Figure 5. Histogram 2

4

5

6

7

u
n

t

0

2

4

6

8

1 2 3 4

C
u

m
u

la
ti

ve
 C

o
u

n
t

Attribute Value

List 1

List 2

Figure 6. Cumulative Histogram 2

with a frequency value of 69, 971. The next most frequent is and at 28, 852 and the third most frequent is that
with 10, 595. It isn’t clear in this case if the difference in frequency between the and and is really twice that of
the difference between and and that. Should these words be considered more different, in terms of frequency,
than say doctor, with a frequency of 100 and pemmican1 (frequency of 1)?. It is for these reasons we will
leave it to the researcher to define Ca so as to best suit their experiment.

We let kBsc be the count items included in the cumulative count up to c for soft attribute s and ksc be the
average. These are defined by the constraints given in Equations 3a and 3b. The constraints defining cumu-
lative frequency is used in every cumulative formulation, while the constraints defining ksc is used in just the
average formulations. Each formulation needs the constraint defined in Equation 3c to ensure the hard attribute
conditions are met. The objective functions, and any additional constraints needed, for CAL, CAQ, CPL and
CAQ are given in Equations 2a, 2d, 2e and 2h respectively.

min
∑
B∈B

∑
s∈S

∑
c∈Cs

dBsc (2a)

s.t. dBsc ≤ kBsc − ksc ∀B ∈ B,∀s ∈ S, ∀c ∈ Cs (2b)

dBsc ≤ ksc − k,Bsc ∀B ∈ B,∀s ∈ S, ∀c ∈ Cs (2c)

min
∑
B∈B

∑
s∈S

∑
c∈Cs

(kBsc − kac)2 (2d)

min
∑

B,B′∈B

∑
s∈S

∑
c∈Cs

dBB′sc (2e)

s.t. dBB′sc ≤ kBsc − kB′sc ∀B,B′ ∈ B,∀s ∈ S, ∀c ∈ Cs (2f)
dBB′sc ≤ kB′sc − kBsc ∀B,B′ ∈ B,∀s ∈ S, ∀c ∈ Cs (2g)

min
∑

B,B′∈B

∑
s∈S

∑
c∈Cs

(ηBsc − ηB′ac)
2 (2h)

1A nutritious food made from a mixture of fat and protein.

3278

N. Boland et al., Picking Items for Experimental Sets: Measures of Similarity and Methods for Optimisation

kBsc =
∑
w∈B
fws≤c

xw, ∀B ∈ B,∀s ∈ S, ∀c ∈ Cs (3a)

ksc =
1

|B|
∑
B∈B

kBsc, ∀s ∈ S, ∀c ∈ Cs (3b)

hBc =
∑
w∈B
fwh=c

xw ∀B ∈ B,∀c ∈ Ch (3c)

4 NUMERICAL RESULTS

4.1 Data

To compare the cumulative histogram to the previous histogram approach we are using two datasets of words.
The first is the data base provided by SOS, a set of 22,461 words whose attributes include frequency2, number
of letters, number of phonemes3, number of syllables, familiarity4, concreteness5, imagery6 and the average
age of acquisition7. Many of these attributes are normed to some value. Statistics about these attributes are
summarised in Table 1. The second database we are using, AH, was provided to us by Andrew Heathcote. It

Attributes Number of values Average Deviation Min Max

Frequency 505 65.15756 825.8636 1 69971
Letters 8 6.556431 1.926268 3 10

Phonemes 12 5.521393 1.910524 1 12
Syllables 5 2.117403 0.900049 1 5

Familiarity 433 169.9412 242.6823 0 657
Concreteness 443 131.7867 212.6101 0 670

Imagery 443 153.3857 224.9957 0 667
AoA 244 49.42353 134.8834 0 694

Table 1. Attribute Statistics for the SOS tests

contains 6, 952 Dutch words. The soft attributes are the monograms and bigrams of the words8. Most of the
monograms have three or four attribute values: 0, 1, 2 and perhaps 3. Just two, s and t have four values, and
three others just have two. Nearly all bigrams have two values: 0 and 1, with a few have three values. For
each of these datasets, we have a single dummy hard attribute which is merely used to determine the number
of items to be selected.

Our test data consisted of 47 different tests based on the SOS database and 4 based on the AH database.
The variations on the SOS database include having the items randomly allocated to one of 2, 3, 4 or 10 lists,
different attributes combinations such as just the phonemes, familiarity, concreteness, imagiability and age of
acquisition or all the attributes. The number of items selected for each list can be any of 50, 100, 250, 1000,
1500, 2000 or 2500. Both the AH tests has 8 lists and either 250 or 125 words are to be chosen from each list.
The attributes were either just the monograms or both the monograms and bigrams.

4.2 Results

In these tests we compare each of the cumulative formulations and compare them to the histogram formula-
tions. Each of the formulations were implemented using Python 2.7 using IBM IlOG CPlex 12.5 as the
2The frequency of a word in printed text
3The individual sound in a word, e.g. the phonemes of the word the are th and e
4The printed familiarity of a word
5How well defined the word is
6The ease that a word arouses a mental image
7The average age a word is learnt
8Monograms are the number of instances single characters in the words, bigrams are the number of pairs of characters. e.g. the monograms
of banana are b, a, n with values 1, 3 and 2 respectively, the bigrams are ba, an and na, with values 1, 2 and 2

3279

N. Boland et al., Picking Items for Experimental Sets: Measures of Similarity and Methods for Optimisation

MIP solver. The tests were ran on a Dell PowerEdge R710 with dual hex core 3.06GHz Intel Xeon X5675
Processors and 96GB RAM running Red Hat Enterprise Linux 6. Each test was given a time limit of 2 hours.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

3
0
0

6
0
0

9
0
0

1
2
0
0

1
5
0
0

1
8
0
0

2
1
0
0

2
4
0
0

2
7
0
0

3
0
0
0

3
3
0
0

3
6
0
0

3
9
0
0

4
2
0
0

4
5
0
0

4
8
0
0

5
1
0
0

5
4
0
0

5
7
0
0

6
0
0
0

6
3
0
0

6
6
0
0

6
9
0
0

7
2
0
0

%
 o

f
te

st
s

Time taken

CPL

HPL

CPQ

HPQ

CAL

HAL

CAQ

HAQ

Figure 7. Time Performance Profile

First we compare how often the different formula-
tions find an optimal solution and the time taken to
do so. using the performance profile given in Fig-
ure 7, we can see how many instances were solved
to optimality as those took less than 7200 seconds
(2 hours) to solve. CPL and CAL were the best
performing cumulative formulations finding optimal
solutions to 37% and 35% of the tests respectively.
This is compared to HPL and HAL which found
solutions to 73% and 69% of the tests. In fact,
HPQ, the worse performing histogram formulation
still managed to find optimal solutions to 43% of the
tests. In all cases, when a cumulative formulation
found an optimal solution, the histogram formulations had also found an optimal solution is less time.

In the SOS tests that were only matching over the phonemes, all formulations solved to optimality. The
differences in time taken were negligible, as all tests solved in under one second. In SOS tests with four
attributes, the cumulative formulations were mostly solved to optimality. However, it was significantly slower
than the histogram formulations. The cumulative formulations solved very few of the other test instances,
although many of the histogram linear formulations did.

As can be expected, the HPL formulation produces the solutions best matched for the HPL measure, shown in
Figure 9. In fact, the HPL and HAL formulations produced most of the best solutions under every measure. In
every test, when comparing over a cumulative measure, one of the histogram formulations always has a better
result.

Thus, we conclude that while cumulative measures provide a superior way of comparing lists of items whose
attributes have order, practically it is better to use histograms when finding matching sets. These test show
that for the most part, using a histogram measure will produce a reasonable cumulative measure. The best
approach would be to use a cumulative measure just for the attributes whose values have order, and use a
histogram measure for all other attributes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
3
0
0

6
0
0

9
0
0

1
,2
0
0

1
,5
0
0

1
,8
0
0

2
,1
0
0

2
,4
0
0

2
,7
0
0

3
,0
0
0

3
,3
0
0

3
,6
0
0

3
,9
0
0

4
,2
0
0

4
,5
0
0

4
,8
0
0

5
,1
0
0

5
,4
0
0

5
,7
0
0

6
,0
0
0

6
,3
0
0

6
,6
0
0

6
,9
0
0

7
,2
0
0

7
,5
0
0

7
,8
0
0

8
,1
0
0

8
,4
0
0

8
,7
0
0

9
,0
0
0

9
,3
0
0

9
,6
0
0

9
,9
0
0

1
0
,2
0
0

1
0
,5
0
0

1
0
,8
0
0

%
 o

f
te

st
s

CPL Measure

CPL

HPL

CPQ

HPQ

CAL

HAL

CAQ

HAQ

Figure 8. Performance Profile on CPL measure.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
3
0
0

6
0
0

9
0
0

1
,2
0
0

1
,5
0
0

1
,8
0
0

2
,1
0
0

2
,4
0
0

2
,7
0
0

3
,0
0
0

3
,3
0
0

3
,6
0
0

3
,9
0
0

4
,2
0
0

4
,5
0
0

4
,8
0
0

5
,1
0
0

5
,4
0
0

5
,7
0
0

6
,0
0
0

6
,3
0
0

6
,6
0
0

6
,9
0
0

7
,2
0
0

7
,5
0
0

7
,8
0
0

8
,1
0
0

8
,4
0
0

8
,7
0
0

9
,0
0
0

9
,3
0
0

9
,6
0
0

9
,9
0
0

1
0
,2
0
0

1
0
,5
0
0

1
0
,8
0
0

%
 o

f
te

st
s

HPL Measure

CPL

HPL

CPQ

HPQ

CAL

HAL

CAQ

HAQ

Figure 9. Performance Profile on HPL measure.

REFERENCES

Armstrong, B. C., C. E. Watson, and D. C. Plaut (2012, February). SOS! An algorithm and software for the
stochastic optimization of stimuli. Behavior research methods.

Boland, N., R. Bunder, and A. Heathcote (2013). A Mixed Integer Programming approach to Picking Items
for Experimental Sets. To be published.

Forster, K. I. (2000, October). The potential for experimenter bias effects in word recognition experiments.
Memory & cognition 28(7), 1109–15.

Van Casteren, M., M. H. Davis, and B. S. Unit (2007, November). Match: a program to assist in matching the
conditions of factorial experiments. Behavior research methods 39(4), 973–8.

3280

