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Abstract: Quantitative predictions of ecological responses to flow alterations are fundamental to the 
planning and delivery of environmental water. However, the majority of such predictions are often based on 
expert opinion, and lack a solid basis in empirical evidence. To derive evidence-based, defensible 
environmental flow recommendations, new approaches are required that make best use of the available data 
to predict ecological responses to flow alterations. In this study we use Bayesian hierarchical modelling to 
explore the impact of changed flow regime on terrestrial vegetation encroachment into river channels. In 
regulated rivers, encroachment of terrestrial vegetation into the channel is an issue of concern for managers 
because duration, frequency, and season of inundation are major determinants of plant community 
development. Environmental flows are often recommended as a way of reducing encroachment, but the 
assumed response has not been rigorously tested. Neither are there any general quantitative models that 
describe the predicted benefit (in terms of reduced terrestrial vegetation encroachment) of different flow 
regimes. In this paper we report a Bayesian approach that identifies the relationship between flow and 
vegetation encroachment revealed in seven integrated data sets from south eastern Australia. A principal 
advantage of Bayesian modelling is its flexibility. Thus, one is able to model physical and biological 
processes as part of a hierarchical statistical analysis. Here, we describe the relationship between terrestrial 
cover and inundation using a curvilinear function that combines both inundation duration and the number of 
inundation events. The model also incorporates hydrological data for the 5 years prior to vegetation 
sampling, weighting the most recent years most heavily. Finally, it accounts for effects of bank slope, season 
of inundation, and random effects associated with sampling (year of sampling, sampling transect, and 
uncertainty associated with the survey technique used). The model also improves the precision of estimates 
by using expert-derived prior probability distributions for model parameters, and by having a hierarchical 
structure among sites and rivers. Bayesian hierarchical models assume dependency amongst the sampling 
units, and therefore the model parameter values are assumed to be drawn from a larger common distribution. 
Relationships from each site ‘borrow strength’ from other sites, leading to robust influence despite the 
common problems associated with sample replication in environmental monitoring studies such as this. By 
combining data across seven different river systems, we are able to quantify relationships between different 
inundation durations and frequencies and the extent of terrestrial vegetation encroachment. This, in turn, 
allows us to make predictions of encroachment under different flow regimes. The hierarchical nature of the 
model allows us to report at the site and river level and also at the state level. These are the scales of interest 
to local stakeholders and the state funding agencies. Our results highlight the power and flexibility of 
Bayesian models to make quantitative, evidence-based predictions of ecological responses to changes in flow 
regimes. Such models will be vital for the future of environmental water management in data-poor situations 
that are common to environmental monitoring, and produce outcomes that are reportable at different 
stakeholder and governance levels. 
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1. INTRODUCTION 

Protecting and restoring the ecological integrity of freshwater systems relies largely on providing a flow 
regime that mimics the natural regime of that system as closely as possible (Poff et al., 1997). Whilst there is 
broad international uptake of the policies to provide such ‘environmental flows’, in reality there has been 
minimal actual implementation of environmental flow programs (Le Quesne et al., 2010). Environmental 
flow management requires precise estimates of the relationships between flow delivery (e.g. summer base 
flow or winter fresh levels) and resultant ecological impacts (e.g. increasing native fish breeding habitat or 
riparian vegetation community health). Currently, the majority of environmental flow assessments rely 
heavily on expert opinion, often from informally structured expert panel discussions, to derive flow 
recommendations (Stewardson and Webb 2010). Although the experts involved are usually experienced and 
well-respected, the process is not transparent and is potentially open to legal challenge. While there is wide 
agreement on the general principles regarding the ecological impacts of flow alteration, there has been little 
success in deriving quantitative, and thus predictive, relationships between specific ecological responses and 
aspects of the flow regime (Poff and Zimmerman 2010).  
 
Research into the ecological impacts of both flow alteration and restoration is hampered by poor 
experimental design. Common examples include a lack of replication, spatial and temporal confounding, and 
the patchy nature of the treatment (i.e. flow delivery is continuous rather than categorical) (Arthington et al., 
2006; Stewardson and Webb 2010). These issues make it difficult to use the strongest approaches, such as 
BACI (before-after control-impact; Underwood, 1997) or related designs to infer the effects of changes in 
flow. Spatiotemporal gradient studies are the most applicable to the study of flow-ecology relationships, but 
these data can be difficult to handle statistically. Lack of replication at the correct scale (i.e. sampling from 
more than one river, rather than from more than one reach), and spatial and temporal confounding greatly 
impact upon the ability of standard statistical approaches (e.g. ANOVA, GLM) to detect effects. Bayesian 
statistical approaches, which are inherently flexible, are able to cope with some of these issues (Clark, 2005). 
Bayesian models are able to be formulated to conform to the requirements of the data, whereas standard 
approaches force data to comply with the requirements of a relatively small number of model types 
(McCarthy, 2007). Bayesian methods allow us to model physical and biological processes, rather than simply 
looking for associations within data sets. Bayesian methods also have the benefit of being able to incorporate 
existing knowledge of parameter values into analyses through informative prior probability distributions. 
This reduces the unexplained variation in posterior parameter estimates, and consequently of any quantitative 
predictions from the model.  
 
Another important feature of Bayesian modelling approaches is that they allow the construction of far more 
complex models than is possible with traditional statistical approaches, and are particularly suited to dealing 
with the complexities of spatiotemporal aspects of ecological datasets (Clark, 2005). A Bayesian hierarchical 
model treats multiple sampling units (e.g. sites or groups of sites) as ‘exchangeable’ where the parameter 
values (e.g. mean vegetation cover) that describe each site are expected to be similar (but not necessarily the 
same). An identical assumption is made in every statistical analysis (frequentist or Bayesian), as replicates 
within sampling units are assumed to be independent and identically distributed. In Bayesian hierarchical 
models, exchangeability of parameter values is achieved by assigning a prior distribution, in which the prior 
parameter values (e.g. site mean) for all sampling units are viewed as a sample from a common distribution. 
The parameters (e.g. mean across all sites) of this distribution are known as ‘hyperparameters’. Therefore, the 
entire set of observed data can be used to estimate the values of the hyperparameters, even though those 
values are not observed (Gelman et al., 2004). The practical effects of the Bayesian hierarchical approach is 
that unexplained variation, both within and among sampling units, is reduced relative to an analysis that does 
not assume a hierarchical relationship among the sites (Gelman et al., 2004). 
 
Here, we use Bayesian hierarchical modelling to quantify the relationship between different aspects of a 
managed flow regime (duration, frequency and seasonality of inundation) and the encroachment of terrestrial 
vegetation into river channels. In regulated rivers, reduced base flows and altered flooding frequencies can 
lead to growth of terrestrial species within the channel, disrupting normal fluvial processes. In south-eastern 
Australia, the ‘millennium drought’ of 2000-2010 saw many river channels heavily colonized by terrestrial 
species. Terrestrial vegetation encroachment results from a predictable set of conditions, and has globally 
well-defined consequences for riverine ecosystems (Miller et al., 2013). Environmental flow assessments 
often recommend flow delivery to remove and/or prevent encroachment in river channels (e.g. VEWH et al., 
2011; Konrad et al., 2012), and while the ecological relationships that underpin such flow recommendations 
are accepted as ‘fact’, the evidence for and against them often has not been rigorously tested (Sutherland et 
al., 2004). Our aim was to create a quantitative model of the terrestrial vegetation response to flow regime to 
by analysing relationships between flow and terrestrial vegetation data from south east Australian rivers. 
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2. METHODS 

The data analyzed in this paper were collected through the Victorian Environmental Flows Monitoring and 
Assessment Program (Chee et al., 2009; Cottingham et al., 2005). VEFMAP is a major government-funded 
monitoring program, specifically designed to assess the effectiveness of the state’s environmental flows 
program. Vegetation data were collected from 27 sites across 7 different river systems spread across the 
entire state (http://tinyurl.com/VEFMAPvegSites). At each site, Braun-Blanquet (Mueller-Dombois and 
Ellenberg, 1974) cover scores for each species were assessed in 1 x 1 m quadrats. The Braun-Blanquet cover 
abundance scale consists of 7 classes relating to different amounts of cover: 0 (not present), + (few 
individuals), 1 (<5%), 2 (5-25%), 3 (35-50%), 4 (50-75%) and 5 (75-100%). The quadrats were spaced 
across 10 cross-sectional transects that spanned approximately 500 m of the river. This process was repeated 
up to 3 times (2008, 2010, 2012). Terrestrial vegetation species were classified into functional groups 
according to Casanova and Brock (2000), and the mid-points of the Braun-Blanquet cover ranges of all the 
terrestrial species were summed together to give a ‘total terrestrial vegetation cover’ for each quadrat. Site 
surveys were used to relate the elevation of each quadrat to hydrological data, and therefore to calculate the 
number of days of inundation per year and the number of individual inundation events experienced by that 
quadrat. Overall, the analysis incorporated data from 9464 quadrats. 
 
Results of a systematic literature review (Miller et al., 2013) and an expert-based Bayesian network (de Little 
et al., 2012) indicated that terrestrial vegetation cover within river channels will be highest with little or no 
inundation, and will drop towards zero with increasing duration of inundation. Breaking the same period of 
inundation into a number of separate inundation events is expected to reduce the amount by which vegetation 
cover might be reduced if that inundation period had been uninterrupted (Figure 1).  

 The expected joint effects of inundation duration 
and frequency can also be represented 
mathematically as: ܿ =  ି() Equation 1ݒ

where c is the % terrestrial vegetation cover expected 
within the stream channel, ݒ is the maximum cover 
seen when inundation is zero, m is a parameter that 
defines how the steepness of the curve from ݒ down 
to 0 changes with the number of distinct inundation 
events (f). This explicit mathematical expression of 
the process by which inundation (T) and event 
duration (f) interact to reduce terrestrial vegetation 
cover forms the core of our model.  
 
We were also interested in the effect of the timing of 
environmental flow delivery on terrestrial 
encroachment, so our model also included season of inundation as an additive effect. Season of inundation 
was quantified as the ratio of days of inundation in winter/spring (May-November) to days of inundation in 
summer/autumn (December-April).  We included hydrological data for 5 years prior to the vegetation 
sampling. However, inundation in more recent years was assumed to be more important than older 
inundation events. To capture this effect, the inundation data were weighted by a negative exponential 
function according to their age. The strength of the negative exponential weighting was determined by a 
scalar parameter (d) fitted during the analysis. Bank slope differed within transects and also between sites. As 
steep banks hold less fertile sediments, and are likely to have lower vegetation cover, we also included angle 
of bank for each quadrat as an additive effect. To account for any pseudo-replication in our sampling design, 
we included random effects for transect (as cover per quadrat was assessed along 10-15 transects at each site) 
and sample year (sites were sampled in multiple years: 2008, 2010 or 2012) in the model. Finally, we square-
root transformed the cover data prior to analysis in order to achieve a better spread of points around the fitted 
function, and to allow us to assume Gaussian-distributed residuals. 
 
The final model structure is thus: ඥܿ(ௌோ)~ܰ൫ߤ(ௌோ), (ௌோ)ߤ ଶ[]൯  Equation 2ߪ = (ௌோ)ି(ೄೃ)((ೄೃ)(ೄೃ))ݒ + (ௌோ)݁ܵߚ + (ௌோ)݈ܵ(ௌ)ߛ + (௫௦)ߜ +  Equation 3 (௬)ߝ

 

Figure 1. Diagram showing the relationship 
between vegetation cover (c) and the duration (T) 

and frequency (f) of inundation. 
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where ܿ(ௌோ) is vegetation cover data within each site (S) within each river (R). N refers to a normal 
distribution, ߤ(ௌோ) is the mean of the modelled (square root transformed) cover, and ߪଶ[]	is the variance of 
this distribution; the bracketed subscript for a variance parameter indicates the parameter or data for which 
variance is estimated. ܵ݁(ௌோ) and ݈ܵ(ௌோ) are the season of inundation and bank slope for each quadrat, 
respectively. The parameters ߚ and ߛ(ௌ)	are coefficients for the season and slope covariates (the subscript S 
denotes that this parameter was estimated at the site-scale only, not at the river-scale). ߜ(௫௦) is the random 
effect of transect (xs) and ߝ(௬) is the random effect of sampling year. 
 
The parameters ݒ(ௌோ), ݉(ௌோ), and ߛ(ௌ)were modeled hierarchically. The prior for each site-level parameter 
was assumed to be drawn from river-level distributions of parameter values with their own mean and 
variance, and these river-level parameters were again assumed to be drawn from a state-level distribution of 
parameter values. For example: ݒ(ௌோ)~ܰ൫ݎ. ,(ோ)ݒ .ݎ ଶ[௩బ]൯  Equation 4ߪ .(ோ)~ܰ൫݃ݒ ,ݒ  ଶ[.௩బ]൯  Equation 5ߪ
 
Where ݎ.  ଶ[௩బ] dictate theߪ (ௌோ)values andݒ indicates the river-level mean of the distribution of	(ோ)ݒ
deviation of individual ݒ(ௌோ) values from ݎ.  does not have a river-level hyperparameter (see Fig 2). Parameters that are not subscripted with S or R	(௦)ߛ although ,(௦)ߛ (ோ). This structure is the same for ݉(ௌோ), andݒ
(݃. .݃ ,݉.݃	,ݒ  are calculated at the highest levels of the hierarchy – the state. The ((௬)ߝ ,(௫௦)ߜ ,ߚ ,ߛ
hierarchical structure of the model is illustrated in Figure 2. 
 
All parameters in a Bayesian model 
require a prior probability distribution, 
which is then updated by data. It is 
common practice to use minimally-
informative prior distributions when little 
is known about the parameter. We used 
minimally-informative priors for 
parameters relating to pseudo-replication 
and confounding background variation 
 However, for .(and d ,(௬)ߝ ,(௫௦)ߜ	,(ௌ)ߛ)
the three parameters where we were 
particularly interested in quantifying their 
relationship with terrestrial vegetation 
cover (݃.  we used the ,(ߚ , ݃.݉, andݒ
expert-derived Bayesian belief network 
(BBN) from de Little et al. (2012) to 
produce informative prior distributions. 
The expert-quantified BBN was used to 
create new data sets that corresponded to different states of parent variables in the BBN, and their consequent 
distributions of vegetation covers. These BBN-derived data were then run through the hierarchical Bayesian 
model described here with minimally-informative priors for all parameters, and the posterior distributions 
generated for ݃.   .were used as informative prior distributions for the final hierarchical model ߚ , ݃.݉, andݒ
 
To test the effect of using a hierarchical approach, we also ran non-hierarchical versions of the models at the 
river level. This was done by removing the higher-level hyperparameters from the model, and instead 
assigning the expert-derived prior distributions to the parameters at the river level. All model fitting was done 
using the OpenBUGS software package (Lunn et al., 2009). We used 2 parallel Markov chains for model 
estimation. Each chain was burned in for 10000 iterations, with a further 20000 iterations for parameter 
estimation. The Brooks Gelman Rubin diagnostic (Brooks and Gelman 1998) was used to confirm 
convergence of the chains by the end of the burn-in. These operations resulted in a total sample size for 
parameter estimation of 40000.  

3. RESULTS 

We present here example results for several sites and scenarios (no inundation, 50 days continuous 
inundation in winter, 50 days continuous inundation in summer, 50 days inundation in summer divided into 
three episodes) that are representative of the findings for every site included in the analysis (27 sites in total).  

Figure 2. Hierarchical structure for the vegetation model. 
Refer to Methods section for definitions of the parameters. 
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The results show that moderate levels 
of inundation (50 days) will be 
effective at preventing vegetation 
encroachment for most sites (Figure 
3a&d). Under zero inundation, all sites 
showed moderate to high cover of 
terrestrial vegetation within the 
channel. These predicted cover values 
decreased significantly, at some sites to 
almost zero cover, with 50 days of 
continuous inundation. Inundation in 
summer leads to slightly lower cover 
than inundation in winter at sites where 
initial cover is high (Figure 3c). 
Breaking the inundation into several 
distinct wetting events or episodes 
reduces its effectiveness (Figure 3a&b).  
 
The use of expert-derived priors, rather 
than minimally-informed priors, 
allowed us to incorporate expert 
opinion, as well as field data, into our 
model, and thus reduced the level of 
uncertainty around the parameter 
estimates (e.g. ݃.݉; Figure 4a) and 
model predictions (Figure 4c). 
Parameter values for each river differed 
somewhat between the hierarchical and 
independent sites analyses, with the median values being more consistent across rivers for the hierarchical 
model (e.g. ݎ.݉; Figure 4b). The uncertainty (95% credible intervals) of parameter values was substantially 
higher for all rivers in the independent rivers model, as was the uncertainty around predicted terrestrial cover 
values. This was particularly evident for the Broken and Macalister rivers (Figure 4b&d). 

 
Figure 4 (a) shows an example of the parameter ݃.݉ estimated with expert-informed and minimally 

informed priors, (b) ݉(ௌோ) values for different rivers for hierarchical and non-hierarchical models, predicted 
terrestrial encroachment cover after 50 days continuous winter inundation (c) for expert-informed versus 

minimally informed prior models, and (d) hierarchical versus non-hierarchical models. The median values 
are plotted, along with the 95% credible interval for the parameter distribution.

 
Figure 3 Predicted median percent cover of terrestrial vegetation in 
river channels under different inundation scenarios (a) & (b) show 

the difference between the predicted effect inundation delivered 
continuously or over 3 wetting episodes, (c) shows the predicted 

effect of 50 days of inundation delivered in summer versus winter, 
and (d) shows the predicted effect of 50 days of inundation on sites 
on four different rivers. The median values are plotted, along with 

the 95% credible interval for the parameter distribution. 

363



de Little et al., Using Bayesian hierarchical models to measure the effectiveness of environmental flows 

 

4. DISCUSSION AND CONCLUSIONS 

In the example presented here, the findings of previous environmental flow assessments – that flow 
management can be used to reduce terrestrial vegetation encroachment – have been supported by the results 
of our Bayesian hierarchical analysis. However, modelling with a Bayesian context has allowed us to 
mathematically represent the physical processes inherent in this relationship: we are able to incorporate the 
negative exponential effect of inundation duration on terrestrial vegetation, the rate at which the frequency of 
inundation changes the ‘concavity’ of that relationship (Figure 1), and weight the effect of different years of 
inundation data according to their age. Studies that focus on BACI or similar ‘flow delivery as treatment’ 
based designs are not able to represent the flow-ecology relationships in this way. Rather, they simply test for 
associations within the data, as they lack the sophistication to accurately represent the complexity of the 
underlying physical processes. The flexibility of Bayesian modelling allows us to formulate physically-
realistic models of response to flow, and these models can be updated as new knowledge and data become 
available via an iterative cycle of model development.  

 
Modelling within a Bayesian framework also allowed us to incorporate expert-derived information, via the 
prior distribution in Bayes theorem, to improve the accuracy and precision of our estimates (Figure 4a&c). 
Restoration studies have notoriously ‘patchy’ datasets, and the ability to combine different sources of 
information can allow for greater inference in field data poor situations. Also in this vein, the hierarchical 
approach allowed us to incorporate information from a large number of sites (27) from 7 different river 
systems, which greatly improved the precision and accuracy of our predictions (Figure 4b). This concept of 
exchangeability means that conclusions will be greatly strengthened in the data-poor situations that are 
common in environmental flows studies. 

 
The modelling process outlined in this paper can be used to make specific predictions (together with the 
uncertainties of those predictions) of ecological responses to different flow regimes. Particular to the 
hierarchical model structure, this approach allows us to report results at multiple scales (results not shown). 
While land owners may be interested in the relationship at the site scale, catchment management authorities 
are looking for quantified relationships to deliver flow components at a river scale, and finally the 
environmental flow funding body or water holder (e.g. The Victorian Department of Environment and 
Primary Industries) is interested in generalising such relationships to the entire state of Victoria. By 
quantifying the major model parameters (e.g. the effect of duration and frequency of inundation) at these 
three scales within a hierarchical model, we can make predictions of vegetation cover at all these scales. The 
other advantage of the Bayesian hierarchical modelling approach is that it provides a mathematically valid 
framework for making predictions at sites that have not been monitored. The river-level distributions of 
parameters can be sampled from to provide predictions for a new hypothetical site on that river, or the state-
level distributions can be used to similarly make predictions for another river entirely. Such predictions use 
only the fitted high-level parameters (e.g. river level, state level) to make predictions, and so are less precise 
than those produced for sites where monitoring data have been collected. However, the predictions are non-
biased, and provide a solution to the well-known problem in ecology of scaling up small-scale results to 
larger scales.  
 
In conclusion, while processed-based Bayesian hierarchical models are a significantly more complex to build 
and understand than standard statistical analyses, the richness of information that comes from them makes the 
investment of funds into such effort worthwhile. This is exactly the type of general quantitative ecological 
response model that environmental flows science has been lacking. Such quantitative relationships have the 
potential to help move environmental flows into a new era of ‘evidence-based’ environmental management. 
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