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Abstract: Spatially continuous information of seabed sediments is often required for a variety of activities 
including seabed mapping and characterisation, prediction of marine biodiversity, and marine environmental 
planning and conservation. As seabed sediment data is often collected by point sampling, spatially 
continuous information must then be predicted from the point data. The accuracy of the predicted information 
is crucial to evidence-based decision making in marine environmental management and conservation. 
Improving predictive accuracy by identifying the most accurate methods is essential, but also challenging, 
since the accuracy is often data specific and affected by many factors. 

Because of the high predictive accuracy of machine learning methods, especially Random Forest (RF), they 
were introduced into spatial statistics by combining them with existing spatial interpolation methods (SIMs), 
which resulted in new hybrid methods with improved accuracy. This development opened an alternative 
source of methods for spatial prediction. These hybrid methods, especially the hybrids of RF with inverse 
distance weighting (IDW) or ordinary kriging (OK) (i.e. RFOK or RFIDW), showed their high predictive 
capacity. However, their applications to spatial predictions of environmental variables are still uncommon. 
Model selection for RF and the hybrid methods is necessary and further test is required.  Furthermore, model 
averaging has been argued to be able to improve predictive accuracy, but no consistent findings were 
observed in previous studies. 

In this study, we aim to identify the most accurate methods for spatial prediction of seabed gravel content in 
the northwest Australian Exclusive Economic Zone. We experimentally examined: 1) whether input 
secondary variables affect the performance of RFOK and RFIDW; 2) whether the performances of RF, SIMs 
and their hybrid methods are data specific; and 3) whether model averaging improves predictive accuracy of 
these methods. For RF and the hybrid methods, up to 21 variables were used as predictors. The predictive 
accuracy was assessed in terms of relative mean absolute error and relative root mean squared error based on 
the average of 100 iterations of 10-fold cross-validation.  

The findings of this study are:  
• the predictive errors fluctuate with the input secondary variables;  
• the existence of correlated variables can alter the results of model selection, leading to different models;  
• the set of initial input variables affects the model selected;  
• the most accurate model may be missed during the model selection; 
• RF, RFOK and RFIDW proved to be the most accurate methods in this study, with RFOK preferred;  
• these methods are not data specific, but their models are, so best model needs to be identified; and 
• Model averaging is clearly data specific.  

In conclusion, model selection is essential for RF and the hybrid methods. The best model needs to be 
identified for individual studies and application of model averaging should also be examined accordingly. RF 
and the hybrid methods have displayed substantial potential for predicting environmental properties and are 
recommended for further testing for spatial predictions in environmental sciences and other relevant 
disciplines. This study provides suggestions and guidelines for improving the spatial predictions of 
biophysical variables in both marine and terrestrial environments. 
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1. INTRODUCTION 

Environmental geoscience and geospatial information are often required for evidence-based decision making 
by governments, industry and the wider community on a range of economic, social and environmental issues 
relevant to managing Australia’s natural resources. For example, seabed sediment data is often required for a 
variety of activities including seabed mapping and characterisation, prediction of marine biodiversity, and 
marine environmental planning and conservation (McArthur et al., 2010; Pitcher et al., 2008; Przeslawski et 
al., 2011). However, spatially continuous data are usually not available and information of many 
environmental variables including seabed sediments is usually collected by point sampling. Spatially 
continuous information must then be predicted from this often sparse, unevenly distributed point data. This is 
particularly true within the continental Australian Exclusive Economic Zone (AEEZ), due to the expense and 
practical limitations of acquiring samples.  

Statistical and mathematical techniques for spatial prediction are essential tools for generating spatially 
continuous data from point data. The existing spatial interpolation methods (SIMs) can be classified into 
three groups (Li and Heap 2008, 2011): 1) deterministic or non-geostatistical methods (e.g. inverse distance 
weighting (IDW)); 2) stochastic or geostatistical methods (e.g. ordinary kriging (OK)); and 3) combined 
methods (e.g. regression kriging). These methods are, however, often data or even variable specific and their 
performance depends on many factors (Li and Heap 2011). No consistent findings have been obtained on 
how these factors affect the performance of spatial prediction methods, making it difficult to select an 
appropriate method for a given dataset (Li and Heap 2011). IDW is the most commonly applied interpolator 
because of its relative simplicity and availability. However, predictions using IDW are usually associated 
with large predictive errors (Li and Heap 2008). Therefore, it is often a challenge to select an appropriate 
spatial prediction method for a given study area. 

The accuracy of spatially continuous environmental information is critical to evidence-based decision 
making. Improving the accuracy by identifying the most accurate SIMs is essential, but also challenging 
since the accuracy is often data specific and affected by many factors. Machine learning methods, like 
random forest (RF) and support vector machine (SVM), have showed their predictive accuracy in data 
mining and other disciplines in terms of predictive errors (Cutler et al., 2007; Diaz-Uriarte and de Andres, 
2006; Drake et al., 2006; Shan et al., 2006).  Thus they were introduced to spatial statistics by combining 
them with commonly used SIMs to predict the spatial distribution of seabed sediments (Li, 2011; Li et al., 
2010 ).  These hybrid methods, especially the hybrids of RF with IDW or OK, showed their high predictive 
capacity (Li et al., 2011b; Li et al., 2011c; Li et al., 2012b).  

RF can select the most important variable at each node split (Okun and Priisalu, 2007). RF can also deliver 
good predictive performance even when most predictive variables are noisy (Diaz-Uriarte and de Andres, 
2006). Thus model selection is assumed to be unimportant for RF and hence for the hybrid methods. This 
assumption was preliminarily tested for spatial predictions of environmental variables in previous studies (Li 
et al., 2011a; Li et al., 2011b; Li et al., 2012a; Li et al., 2012b).  These studies have suggested that model 
selection is necessary for RF. 

Furthermore, since model averaging can often improve the predictive accuracy (Marmion et al., 2009), it was 
tested in the geostatistical context, but no consistent findings were observed in previous publications. Model 
averaging showed no significant improvement (Li et al., 2011a; Li et al., 2011b) for seabed mud predictions 
but displayed further improvement for seabed sand predictions (Li et al., 2012b). Therefore, further study is 
warranted. 

In this study, we aim to identify the most accurate predictive model to predict the spatial distribution of 
seabed gravel content in the northwest region of the Australian continental margin. To achieve this, we 
tested: 1) whether the input secondary variables affect the performances of RF, RFOK and RFIDW; 2) 
whether the performances of RF, SIMs and their hybrid methods are data-specific; and 3) whether model 
averaging improves predictive accuracy of these methods in the study region. 

2. METHODS 

2.1. Study area and datasets  

The study area is located in the northwest region of AEEZ (Figure 1). This region covers an area of about 
227,000 km2 and comprises two geomorphic provinces (i.e. shelf and slope) (Heap and Harris 2008). It is 
mostly located on the shelf, with water depth ranging from 0 to 378 m, and backed by a coastline of 
southwest-northeast orientation.  
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In total, 237 samples of seabed sediments were 
considered in this study following data quality 
control (Li et al., 2010; Li et al., 2012b) and 
further check to ensure location information 
suitable for 250 m resolution. All samples were 
collected from the shelf. Sample density is very 
low, with 1.04 samples per 1000 km2 on average. 
The sediments are divided into three groups: 
mud, sand and gravel (Li et al., 2010). In this 
study, we only focused on seabed gravel content. 

A range of predictors could be used as secondary 
information to improve the spatial prediction of 
marine environmental data. However, only six 
predictors that were justified and used in 
previous studies (Li et al., 2011b; Li et al., 
2012b) were employed in this study based on 
their availability for the whole continental AEEZ 
at the resolution required. These predictors are: 
bathymetry (bathy), distance-to-coast (dist.coast), 
seabed slope (slope), seabed relief (relief), 
latitude (lat) and longitude (long). Of these 
predictors, bathymetry data was based on 
Whiteway (2009), and seabed slope and relief 
were derived from the bathymetry data. All 
datasets of these variables were generated in 
ArcGIS at a 250 m resolution using the methods 
detailed by Li et al. (2010; 2012b). The 
coordinates system for this study was based on 
WGS84 as explained in previous studies (Li et al., 2011b; Li et al., 2011c). 

2.2. Methods for spatial prediction  

RF, RFOK, RFIDW, and two most commonly compared methods, IDW and OK, were used in this study.  
For RFOK and RFIDW, six variables (bathy, dist.coast, slope, relief, lat, long) and their 15 derived variables 
(i.e. bathy2, bathy3, dist.coast2, dist.coast3, slope2, slope3, relief2, relief3, lat2, long2, lat*long, lat*long2, 
long*lat2, lat3 and long3) were used as predictors in the RF component based on previous studies (Li et al., 
2011b; Li et al., 2011c). The residuals of RF were then interpolated using IDW with a searching window size 
of 5, and using OK with a Spherical model and a searching window size of 5 separately. For RF, the 
predictors used are identical to those used in the RF component in RFOK and RFIDW. For IDW, a distance 
power of 2 and a searching window size of 12 were used. For OK, log transformation was applied, and a 
Spherical variogram model and a searching window size of 12 were used. All these predictors and parameters 
were chosen based on our previous findings for predicting the seabed gravel content in AEEZ (Li et al., 
2011d).  

We further tested if model averaging could improve the prediction accuracy. In this study, we averaged the 
predictions of two methods (RFOK and RFIDW) or three methods (RFOK, RFIDW and RF) to produce the 
final predictions.  

To compare the performance of these methods, a 10-fold cross-validation was employed. Randomness 
associated with the 10-fold cross-validation may lead to each method receiving different samples. To reduce 
such influence, we repeated the 10-fold cross-validation 100 times. Relative mean absolute error (RMAE) 
and relative root mean square error (RRMSE) (Li and Heap 2011) were used to assess the performance of the 
methods tested and to compare with findings in previous studies. The predictive errors were assessed based 
on the average of 100 iterations of 10-fold cross-validation. 

The modelling was implemented in R 2.15.1 (R Development Core Team, 2012), using packages ‘raster’ for 
extracting data from different data layers, ‘gstat’ for geostatistical modelling and ‘randomForest’ for random 
forest modelling. Predictions were corrected by resetting the faulty estimates to the nearest bound of the data 
range (i.e. 0 or 100%) if applicable (Goovaerts, 1997). 

 

Figure 1. Spatial distribution of gravel content samples
and their occurrence in the geomorphic provinces. 
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3. RESULTS 

3.1. Effects of input secondary variables on the performance of RF, RFOK and RFIDW 

In total, 22 models were developed for RF, RFOK and 
RFIDW respectively (Table1). The predictive errors of 
all three methods fluctuated with the input secondary 
variables in terms of RRMSE (Figure 2). Since RMAE 
displayed a similar pattern to RRMSE in relation to the 
input secondary variables, it is not presented. RRMSE 
of models 6, 12, 20 and 21 was relatively lower than 
that of the rest models, while RRMSE of model 19 with 
only one predictor was prominently higher than that of 
all other models. Overall, model 21 for RF, RFOK and 
RFIDW was relatively more accurate than other 
models. One important phenomenon is that the most 
accurate model was missed during the initial model 
selection from model 1 to model 19, when the 
predictors in model 21 were gradually removed during 
model selection, leading to different models. 

 

 

3.2. Performance of RF, SIMs and their hybrid methods 

The predictive error varied with the methods in terms of RMAE and RRMSE (Figure 3). RF, RFOK and 
RFIDW were the most accurate methods. They were significantly more accurate than the most commonly 
compared SIMs (i.e. IDW and OK), based on Mann-Whitney test for IDW in terms of RRMSE, based on t-
test for IDW in terms of RMAE, and based on t-test for OK in terms of both RMAE and RRMSE (all with a 
p value < 0.0001). Of these three methods, RFIDW was significantly less accurate than RF and RFOK in 
terms of both RMAE and RRMSE based on paired t-test (with a p value < 0.0001). RF was significantly less 
accurate than RFOK in terms of RMAE based on paired t-test (with a p value < 0.0001), while there was no 
significant difference between RF and RFOK in terms of RRMSE based on paired t-test (with a p value = 
0.2146). Overall, RFOK is preferred over RF and RFIDW.  

Figure 2. RRMSE (%) (mean: black line; minimum 
and maximum: dash lines) of 22 models of RF, 

RFOK and RFIDW for gravel content. 

Table 1.  Models developed for gravel content 
in the study region, with predictors contained 
in each model. 

Modelling process No of 
predictors

Model 1: All 21 predictors 21 

Model 2: - sslope from model 1 20 

Model 3: - cslope from model 2 19 

Model 4: - clat from model 3 18 

Model 5: - relief and crelief from model 4 16 

Modle 6: - latlon and slatlon from model 5 14 

Model 7: - slope from model 6 13 

Model 8: - cdist.coast from model 7 12 

Model 9: - latslon from model 8 11 

Modle 10: - cbathy from model 9 10 

Model 11: - slat from model 10 9 

Model 12: - lat from model 11 8 

Model 13: - srelief from model 12 7 

Model 14: - sbathy from model 13 6 

Model 15: - clon from model 14 5 

Modle 16: - slon from model 15 4 

Model 17: - sdist.coast from model 16 3 

Model 18: - bathy from model 17 2 

Model 19: - lon from model 18 1 

Model 20: lon, lat, bathy, dist, relief, slope 6 

Model 21: lon, lat, bathy, dist, slope 5 

Model 22: lon, lat, bathy, dist 4 

Predictors: lon, lat, bathy, dist, relief, slope, sbathy, 
cbathy, sdist.coast, cdist.coast, srelief, crelief, cslope, slat, 
clat, slon, clon, latlon, latslon, sslope 
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3.3. Model averaging 

Averaging of the predictions of the two or three most accurate methods produces two methods: 
RFOKRFIDW and RFRFOKRFIDW. The effects of this model averaging are summarised in Table 2. Both 
methods were significantly less accurate than RFOK in terms of both RMAE and RRMSE based on paired t-
test (all with a p value < 0.0001). Thus RFOK is the most accurate method. 

4. DISCUSSION AND CONCLUSIONS 

4.1. Model selection for RF and its hybrid methods 

Model selection is critical in model development. For 
RF, model selection is often assumed to be unimportant 
because: 1) RF is able to select the most important 
variable at each node split (Okun and Priisalu, 2007), 
thus is not sensitive to non-important variables; 2) RF 
can deliver good predictive performance even when 
most predictive variables are noisy (Diaz-Uriarte and de Andres, 2006); and 3) RF is relatively robust to 
outliers and noise and does not overfit (Breiman, 2001). This assumption proves to be invalid by preliminary 
studies being conducted in the application of RF to environmental sciences (Li et al., 2011a; Li et al., 2011b; 
Li et al., 2012a; Li et al., 2012b), and by recent studies in other disciplines (Genuer et al., 2010; Hapfelmeier 
and Ulm, 2013). In this study, four important findings were observed: 1) the predictive errors fluctuate with 
the input secondary variables; 2) the existence of correlated variables can alter the results of model selection, 
leading to different models; 3) the set of initial input variables affects the model selected; and 4) the most 
accurate model can be missed during the model selection and a less accurate model may be selected. 
Although the performance of RF is argued to depend only on the number of strong features, and not on how 
many noise variables if sample size is large (500 to 1000) (Biau, 2012), our findings have further 
demonstrated that model selection is essential for RF and its hybrid methods. This is perhaps because our 
sample is small, which is typical in environmental sciences. The difference between simulated data and 
environmental data may also play a significant role as discussed by Li (2013). In addition, although the 
model selected is relatively parsimonious for this study, the model selection adopted in this study often 
results in the most accurate model instead of the most parsimonious one. This is because the model selection 
is based on accuracy derived from cross-validation. 

As observed by Li et al. (2013) and this study, randomness associated with RF often leads to a different order 
of variable importance between two different runs of RF model. Thus this results in different least important 
variable and then different model, which may cause difficulty in selecting the most accurate model and even 
lead to a suboptimal model being selected, as has been previously observed (Li et al., 2013). Apparently 
further research is required in this field, especially by considering some recently developed feature selection 
approaches (Genuer et al., 2010; Hapfelmeier and Ulm, 2013). 

4.2. Are RF and the hybrid methods data specific? 

RF, RFOK and RFIDW proved to be the most accurate methods in this study. This finding is consistent with 
previous studies (Li et al., 2011b; Li et al., 2011c; Li et al., 2012b) where RF and the hybrid methods (RFOK 
and RFIDW) showed their high predictive capacity. Of these three methods, RFOK is preferred over RF and 
RFIDW. These findings suggest that RF and the hybrid methods are not data specific. However, their models 

 

Figure 3. RMAE (%) and RRMSE (%) of IDW, OK, RF, RFOK and RFIDW for gravel content: summary 
statistics based on the 100 times 10-fold cross-validation. 

Table 2. RMAE (%) and RRMSE (%) of RFOK 
and the averaged methods. 

Method Mean RMAE Mean RRMSE 

RFOK 56.72 86.83 
RFOKRFIDW 57.65 89.19 

RFRFOKRFIDW 57.32 87.63 
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are data specific. This is because the predictive errors change with the input secondary variables. Therefore, 
we need to find an optimal set of predictors for the methods for individual primary variables, and best model 
needs to be selected according to individual situations. The high accuracy of RF and the hybrids has been 
further confirmed by their application to a terrestrial environmental variable (Sanabria et al., 2013a; Sanabria 
et al., 2013b). The high predictive performance should be attributed to their features as discussed in previous 
studies (Li et al., 2011a; Li et al., 2011b; Li et al., 2011c). These methods have displayed substantial potential 
in applications to both marine and terrestrial environmental properties. They are recommended for 
environmental sciences and other relevant disciplines.  

4.3. Model averaging  

Averaging the predictions of two or three most accurate methods (i.e. RFOKRFIDW and RFRFOKRFIDW) 
reduced the predictive accuracy. This is mainly due to the relatively poor performance of RFIDW. This 
negative effect of model averaging is not supported by previous studies where model averaging either 
showed no significant improvement (Li et al., 2011a; Li et al., 2011b) or displayed further improvement (Li 
et al., 2012b; Marmion et al., 2009). It is evident that no consistent findings were observed regarding model 
averaging that is clearly data specific. Therefore, application of model averaging should be examined for 
individual studies.  In addition, averaging the predictions of RF with the predictions of RFOK or RFIDW was 
not considered in this study because RF is usually less accurate than RFOK and RFIDW according to 
previous research (Li et al., 2011a; Li et al., 2012b). However, the finding in this study suggests that such 
averaging should be considered and, thus, is recommended for future studies.  

In summary, model selection is essential for RF and its hybrid methods. RF and the hybrid methods are not 
data specific, but their models are. RFOK is the most accurate method. Model averaging is also data specific. 
Hence the best model needs to be identified for individual studies and application of model averaging should 
also be tested for individual studies. RF and the hybrid methods are recommended for generating spatial 
predictions in environmental sciences and other relevant disciplines in the future.  

ACKNOWLEDGMENTS 

Augusto Sanabria, Fuqin Li and Riko Hashimoto provided valuable comments on an earlier draft of this 
manuscript. Xiaojing Li extracted sediment samples from MARS database. Scott Nichol and Tony Nicholas 
provided clarification about some recently collected samples. Zhi Huang provided bathymetry, distance to 
coast, slope and relief data. Chris Lawson produced a map. This paper is published with permission of the 
Chief Executive Officer, Geoscience Australia. 

REFERENCES 

Breiman, L., 2001. Random forests. Machine Learning 45 5-32. 
Biau, G., 2012. Analysis of a random forest method. Journal of Machine Learning Research 13 1063-1095. 
Cutler, D.R., Edwards, T.C.J., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., Lawler, J.J., 2007. Random 

forests for classification in ecology. Ecography 88(11) 2783-2792. 
Diaz-Uriarte, R., de Andres, S.A., 2006. Gene selection and classification of microarray data using random 

forest. BMC Bioinformatics 7(3) 1-13. 
Drake, J.M., Randin, C., Guisan, A., 2006. Modelling ecological niches with support vector machines. 

Journal of Applied Ecology 43 424-432. 
Genuer, R., Poggi, J.M., Tuleau-Malot, C., 2010. Variable selection using random forest. Pattern Recognition 

Letters 31 2225-2236. 
Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press, New York. 
Hapfelmeier, A., Ulm, K., 2013. A new variable selection approach using random forests. Computational 

Statistics & Data Analysis 60 50-69. 
Heap, A.D., Harris, P.T., 2008. Geomorphology of the Australian margin and adjacent seafloor. Australian 

Journal of Earth Sciences 55 555-585. 
Li, J., 2011. Novel spatial interpolation methods for environmental properties: using point samples of mud 

content as an example. The Survey Statistician: The Newsletter of the International Association of Survey 
Statisticians No. 63 15-16. 

Li, J., 2013. Predictive modelling using random forest and its hybrid methods with geostatistical techniques 
in marine environmental geosciences. The 11th Australasian Data Mining Conference (AusDM2013) proceedings: 
Canberra (submitted). 

399



Li., Predicting spatial distribution of seabed gravel content using RF, SIMs and their hybrid methods 

Li, J., Heap, A., 2008. A Review of Spatial Interpolation Methods for Environmental Scientists. Geoscience 
Australia, Record 2008/23, 137pp. 

Li, J., Heap, A., 2011. A review of comparative studies of spatial interpolation methods in environmental 
sciences: performance and impact factors. Ecological Informatics 6 228-241. 

Li, J., Heap, A., Potter, A., Daniell, J.J., 2011a. Predicting Seabed Mud Content across the Australian Margin 
II: Performance of Machine Learning Methods and Their Combination with Ordinary Kriging and Inverse 
Distance Squared. Geoscience Australia, Record 2011/07, 69pp. 

Li, J., Heap, A.D., Potter, A., Daniell, J., 2011b. Application of machine learning methods to spatial 
interpolation of environmental variables. Environmental Modelling & Software 26 1647-1659. 

Li, J., Heap, A.D., Potter, A., Huang, Z., Daniell, J., 2011c. Can we improve the spatial predictions of seabed 
sediments? A case study of spatial interpolation of mud content across the southwest Australian margin. 
Continental Shelf Research 31 1365-1376. 

Li, J., Heap, A.D., Potter, A., Huang, Z., Daniell, J., 2011d. Seabed gravel content across the Australian 
continental EEZ 2011. Geoscience Australia. 

Li, J., Potter, A., Heap, A., 2012a. Irrelevant Inputs and Parameter Choices: Do They Matter to Random 
Forest for Predicting Marine Environmental Variables?, Australian Statistical Conference 2012: Adelaide. 

Li, J., Potter, A., Huang, Z., Daniell, J.J., Heap, A., 2010. Predicting Seabed Mud Content across the 
Australian Margin: Comparison of Statistical and Mathematical Techniques Using a Simulation 
Experiment. Geoscience Australia, 2010/11, 146pp. 

Li, J., Potter, A., Huang, Z., Heap, A., 2012b. Predicting Seabed Sand Content across the Australian Margin 
Using Machine Learning and Geostatistical Methods. Geoscience Australia, Record 2012/48, 115pp. 

Li, J., Siwabessy, J., Tran, M., Huang, Z., Heap, A., 2013. Predicting Seabed Hardness Using Random Forest 
in R, In: Zhao, Y., Cen, Y. (Eds.), Data Mining Applications with R. Elsevier (in press). 

Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R.K., Thuiller, W., 2009. Evaluation of consensus 
methods in predictive species distribution modelling. Diversity and Distributions 15 59-69. 

McArthur, M.A., Brooke, B.P., Przeslawski, R., Ryan, D.A., Lucieer, V.L., Nichol, S., McCallum, A.W., 
Mellin, C., Cresswell, I.D., Radke, L.C., 2010. On the use of abiotic surrogates to describe marine benthic 
biodiversity. Estuarine, Coastal and Shelf Science 88 21-32. 

Okun, O., Priisalu, H., 2007. Random forest for gene expression based cancer classification: overlooked 
issues, In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (Eds.), Pattern Recognition and Image 
Analysis: Third Iberian Conference, IbPRIA 2007 Lecture Notes in Computer Science: Girona, Spain, pp. 
4478: 4483-4490. 

Pitcher, C.R., Doherty, P.J., Anderson, T.J., 2008. Seabed environments, habitats and biological assemblages, 
In: Hutchings, P., Kingsford, M., Hoegh-Guldberg, O. (Eds.), The Great Barrier Reef: biology, 
environment and management. CSIRO Publishing: Collingwood, p. 377. 

Przeslawski, R., Daniell, J., Anderson, T., Vaughn Barrie, J., Heap, A., Hughes, M., Li, J., Potter, A., Radke, 
L., Siwabessy, J., Tran, M., Whiteway, T., Nichol, S., 2011. Seabed Habitats and Hazards of the Joseph 
Bonaparte Gulf and Timor Sea, Northern Australia. Geoscience Australia, Record 2008/23, 69pp. 

R Development Core Team, 2012. R: A Language and Environment for Statistical Computing. R Foundation 
for Statistical Computing: Vienna. 

Sanabria, L.A., Cechet, R.P., Li, J., 2013a. Combining observational and modelling studies to develop a map 
of Australian fire weather potential, The 20th International Congress on Modelling and Simulation 
(MODSIM2013): Adelaide. 

Sanabria, L.A., Qin, X., Li, J., Cechet, R.P., Lucas, C., 2013b. Spatial interpolation of the FFDI fire weather 
Index: Observational study. Environmental Modelling & Software (submitted). 

Shan, Y., Paull, D., McKay, R.I., 2006. Machine learning of poorly predictable ecological data. Ecological 
Modelling 195 129-138. 

Whiteway, T., 2009. Australian Bathymetry and Topography Grid, June 2009. Geoscience Australia, p. 46pp. 

400




