
What impact do producer measured inputs have on the 
prediction accuracy of BeefSpecs? 

B.J. Walmsleya, D.G. Mayerb and M.J. McPheea 

a Beef Industry Centre, New South Wales Department of Primary Industries, Armidale, New South Wales, 
b Queensland Department of Agriculture, Fisheries and Forestry, Brisbane, Queensland 

Email: malcolm.mcphee@dpi.nsw.gov.au 

Abstract: The BeefSpecs fat calculator is a decision support tool created to help the beef industry 
increase compliance rates with carcass specifications. BeefSpecs combines the predictive powers of animal 
growth and body compositional models with experimental information relating to animal growth and fatness 
in response to changes in production environment. To facilitate producer acceptance and adoption, BeefSpecs 
makes explicit use of inputs that are easily recorded on-farm but still provide effective information to the 
modelling systems to enable accurate prediction. These inputs include: sex, breed type, initial live weight 
(kg), frame score, initial P8 fat depth (mm), hormonal growth promotant use, feed type, length of feeding 
period (days), growth rate (kg/day), and dressing percentage. BeefSpecs provides three outputs that are 
relevant to commercial production systems, namely final live weight, final subcutaneous rump fat depth (P8 
fat), and hot standard carcass weight (HSCW). Most inputs are considered relatively easy to record on-farm 
but some require a degree of technical expertise (e.g. frame score and estimated P8 fat) or equipment (e.g. 
scales to record weight or ultrasonic measurement of P8 fat depth). 

Although the structure of BeefSpecs represents one of its strengths via the linkage of easily recorded on-farm 
inputs to producer language, it also represents a potential weakness. The reliance on on-farm inputs dictates 
that the accuracy of BeefSpecs’ predictions is contingent on the accuracy with which these inputs are able to 
be recorded. The impact inputs have on the prediction accuracy of BeefSpecs has not been reported 
previously. Sensitivity analysis is used to explore the relationships between information that flows in and out 
of modelling systems. A sensitivity analysis provides the opportunity to identify and quantify the key 
interactions present in BeefSpecs and thus provide information concerning where effort should be directed to 
most accurately record inputs and maximise predictive accuracy. 

When investigating the non-linear, and in some cases chaotic, behaviour of models it is critical to measure 
sensitivities over the whole spectrum of inputs that may be encountered. Many designs have been proposed 
for testing sensitivity when models are expensive or lengthy to run. However, a complete factorial array of all 
variables provides the most comprehensive and safest coverage. The simplicity and low computational cost 
of running BeefSpecs lends itself to a complete factorial sensitivity analysis. The traditional ‘one-at-a-time’ 
(OAT) sensitivity analysis was not used because it is fundamentally flawed, as it does not investigate the 
typically complex and interactive behaviour of biological models. In the OAT approach, the model is 
configured to an ‘average’ or baseline scenario, from where each input is tested sequentially making these 
sensitivities only applicable at the selected baseline scenario. 

The sensitivity analysis conducted in this study used a complete factorial array of all BeefSpecs input 
variables, to provide the most comprehensive coverage. This array of inputs was created by changing each 
input one variable at a time and required a total of 57,600 model runs. The dominant effects and interactions 
were identified by conducting an analysis of variance (ANOVA) on the 9-way factorial matrix of inputs. 

Frame score was found to have significant impacts on BeefSpecs predictions of final P8 fat depth including 
errors of up to 2.3 mm P8 fat depth per unit error in frame score. Errors in initial live weight were found to 
have less impact on P8 fat predictions (e.g. 0.5 mm per 10 kg live weight error). Initial P8 fat depth was also 
found to have significant impacts on final P8 predictions, particularly at low initial live weights (e.g. up to 
1.5 mm P8 fat depth per 1 mm error in initial P8 fat). Analysis of HSCW sensitivity to BeefSpecs inputs 
found, as would be expected, that HSCW is dependent only on initial live weight, feeding period, growth rate 
and dressing percentage, and is thus insensitive to other inputs such as frame score and initial P8 fat. These 
findings indicate that the accuracy of BeefSpecs inputs, particularly frame score and initial P8 fat depth, have 
critical impacts on prediction accuracy, which in turn impact on the tool’s utility and potential adoption rates. 
These results also provide support for the development of new technologies that will increase the accuracy 
and ease of recording such inputs in the future. 
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1. INTRODUCTION 

Beef cattle producers are constantly making management decisions in response to production pressures that 
impact on the profitability of their beef businesses. Many of these decisions have either a direct or indirect 
impact on the capacity of cattle to meet market specifications and thus maximise financial returns to the 
enterprise. Until recently there has been only limited experimental data (Edmondston et al. 2006; 
Polkinghorne 2006; McKiernan et al. 2007) to support anecdotal evidence that a significant proportion of 
Australian cattle fail to comply with market specifications. An analysis of 20,000 feedlot records for short-
fed cattle supported this anecdotal evidence by demonstrating that 28% of carcasses failed to meet carcass 
weight specifications costing $5.50/carcass, and 16% failed to meet subcutaneous rump fat depth (P8 fat) 
specifications costing $17.50/carcass (Slack-smith et al. 2009). A more recent analysis of grass-fed records 
containing 18,860 steers and 13,118 heifers demonstrated 17.4% of steers and 15.6% of heifers failed to meet 
carcass weight specifications, costing $25.97/carcass and $7.28/carcass, respectively (McPhee and 
Walmsley, 2013). A similar pattern was found for fat specifications with 13.0% of steers and 19.1% of 
heifers failing to comply with specifications, costing $10.94/carcass and $24.82/carcass, respectively. 

A program was initiated within the Cooperative Research Centre for Beef Genetic Technologies aimed at 
addressing this issue of non-compliance in the beef industry. The BeefSpecs fat calculator (Walmsley et al. 
2011) is a decision support system (DSS) developed by this program which is designed to assist producers 
increase compliance rates with target market specifications by predicting the end-point fatness of carcasses, 
specifically P8 fat. To achieve this objective BeefSpecs combines the predictive powers of animal growth 
and body compositional models (Keele et al. 1992; Williams and Jenkins 1998) with experimental 
information relating to animal growth and fatness in response to changes in production environment. 
Merging animal growth and body compositional models with experimental data in this manner has allowed 
BeefSpecs to be developed to be functional across a wide range of production environments. 

One primary objective during the development of BeefSpecs was to address the concerns raised by Newman 
et al. (2000) that many DSS developed for agricultural industries are perceived as too complex and have thus 
achieved limited acceptance and adoption. In order to overcome these perceived impediments, BeefSpecs has 
combined the computational power of animal growth and body compositional models with easily recorded 
on-farm inputs and terminology familiar to beef cattle producers. These on-farm inputs are focused on animal 
and production characteristics that are relatively simple and inexpensive to record whilst still providing 
effective information to the modelling systems to facilitate prediction. These developments to allow the 
integration of on-farm inputs have occurred while maintaining the integrity of the base modelling systems. 

Although BeefSpecs use of easily recorded on-farm inputs and familiar terminology provides a point of 
strength that helps overcome the perception of DSS being too complicated, they also represent a potential 
weakness. The sensitivity of the BeefSpecs predictions to the accuracy with which inputs are collected and 
the contribution that each input makes to this sensitivity is unclear. It is regarded by modellers and 
practitioners from various disciplines that a sensitivity analysis is a key ingredient of the quality of any 
model-based system (Saltelli and Annoni 2010). Conducting a sensitivity analysis to explore the relationships 
BeefSpecs inputs have with predictions will allow the impacts that inputs have on predictive accuracy to be 
quantified. These findings will identify those inputs which BeefSpecs users need to ensure are collected with 
the highest accuracy to gain the greatest predictive accuracy. Focusing on these inputs and maximising the 
accuracy of their collection will deliver the highest level of functionality and adoption of BeefSpecs within 
the Australian beef industry. 

This paper describes a sensitivity analysis conducted with the objective of determining the extent to which 
the BeefSpecs inputs affect the accuracy of final P8 fat prediction. The impact these findings have on the 
collection of inputs and the implementation of the BeefSpecs calculator will also be discussed. 

2. BACKGROUND 

There have been many modelling systems developed for describing cattle growth and development (Oltjen et 
al. 1986; Keele et al. 1992; Williams and Jenkins 1998; Hoch and Agabriel 2004). However, these models 
have generally failed to gain any real traction and adoption in the form of DSS within the commercial beef 
industry. This lack of adoption has been partially attributed to DSS being perceived as overly complex and 
requiring extensive inputs, having limited end-user input during development, and a mismatch between DSS 
outputs and the language used by end-users, amongst other important factors (Newman et al. 2000). The 
development of BeefSpecs to create a DSS to help producers increase compliance rates with market 
specifications specifically addressed these perceived shortcomings (Walmsley et al. 2011). 
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The dynamic steer growth model called the Meat Animal Research Centre (MARC) model, originally 
developed by Keele et al. (1992) and subsequently modified by Willams and Jenkins (1998), forms the basis 
of the BeefSpecs fat calculator. The development of BeefSpecs has been described by Walmsley et al. 
(2011). In brief, BeefSpecs requires a series of easily recorded on-farm inputs to both initialise starting body 
composition in terms of fat and lean content and predict changes in these components as animals grow. 
Inputs used to initialise BeefSpecs include a description of animal type using sex (e.g. steer or heifer), breed 
type and an estimate of mature size termed ‘frame score’ which are combined with initial live weight (kg) 
and initial P8 fat depth (mm). The performance inputs namely growth rate (kg/day) and feeding period (DOF 
– days on feed), are used to drive the prediction of body composition across time which is also influenced by 
the management inputs; feed type (e.g. grass or grain) and hormonal growth promotant (HGP) use. Predicted 
body composition is used in 
conjunction with sex, breed 
type and live weight to predict 
final P8 fat (mm) (Walmsley 
et al., 2010) which can be 
compared directly with market 
specifications used within the 
Australian beef industry. 
BeefSpecs also calculates 
final live weight based on 
DOF, initial live weight and 
growth rate which are 
subsequently multiplied by 
estimated dressing percent to 
calculate hot standard carcass 
weight (HSCW). The easily 
recorded on-farm inputs and 
model predicted outputs are 
combined with a simple user 
interface to provide an 
interaction that encourages 
on-farm use (Figure 1). The 
breed type input shown in 
Figure 1 is generated by the 
user moving the cursor to 
produce a visual output on the 
interface that best matches the 
user’s live animals. 

Although the inputs to BeefSpecs are considered easily recorded on-farm measurements, some inputs do 
require a level of technical expertise (e.g. estimating initial P8 fat) and the ability of beef producers to 
accurately record these is unclear. Consequently, the impact such inputs to BeefSpecs have on the accuracy 
of outputs is also unclear. A sensitivity analysis explores the relationships between information flowing in 
and out of a model (Saltelli et al. 2000, page 4). Saltelli et al. (2000, page 5) define this mathematically as; 

Si,j = ∂ Yi / ∂ Xj 

where Xj is the model input variable j, Yi is the model output variable i, and Si,j is the sensitivity of the output 
Yi relative to the input Xj. A sensitivity analysis will allow the impact each input to BeefSpecs has on the 
accuracy of prediction to be quantified. This will turn allow inputs to be identified that require particular 
attention to maximise their accuracy of recording and provide guidance as to where effort needs to be placed 
to determine the potential for developing methods to assist users record these inputs. 

Saltelli et al. (2000) outlined a wide range of methods for conducting a sensitivity analysis. The most 
important message they delivered, which is strongly reiterated in Saltelli and Annoni (2010), is that the 
traditional ‘one-at-a-time’ (OAT) sensitivity analysis is flawed, despite being used quite extensively. In the 
OAT approach, the model is configured to an ‘average’ or baseline scenario, and each input (Xj ) is tested 
sequentially. This usually occurs by applying an upward and downward deviation to Xj, and averaging the 
responses in the output (Yi). Whilst this does in fact measure sensitivities, these are only applicable at the 
selected baseline scenario. 

Figure 1. A screen capture of the BeefSpecs web user interface hosted by 
New South Wales Department of Primary Industries. 
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Most modelling systems tend to behave non-linearly, and in some cases chaotically, meaning it is critical to 
measure sensitivities over the whole spectrum of inputs that may be encountered. Importantly, an approach is 
needed which will identify and quantify the key interactions present in the behaviour of BeefSpecs across the 
full range of the input variables. Saltelli and Annoni (2010) list a number of efficient statistically-based 
designs for achieving this. However, these designs are needed only when a model is expensive or lengthy to 
run, and as pointed out by Saltelli and Annoni (2010) conducting a complete factorial array of all variables 
provides the most comprehensive and safest coverage. The simplicity and low computational cost of running 
BeefSpecs lends itself to a sensitivity analysis involving a complete factorial array of inputs. 

3. METHODS 

This study conducted a sensitivity analysis using the techniques described by Saltelli et al (2000, page 4) 
which included a complete factorial design of the BeefSpecs input variables. The inputs and outputs could 
have been standardised to provide an 
indication of ‘relative importance’ which 
would have allowed a comparison across 
all variables. However, preference was to 
retain the original definition, which uses 
the actual units of measurement for each 
variable and thus gives estimates of the 
direct impact on model outputs that is 
attributable to the variability in the 
respective input parameters (i.e. due to 
uncertainty, or errors in recording). 

The BeefSpecs model described by 
Walmsley et al. (2011) was used to create 
a matrix of BeefSpecs inputs and outputs. 
The array of inputs analysed during the 
sensitivity analysis included sex, feed type, HGP, breed type, DOF, frame score, initial P8 fat, initial live 
weight and growth rate. The levels of the inputs analysed are given in Table 1 and produced an array of 
57,600 model runs. This matrix was created by incrementally changing each input one variable at a time as 
well as including BeefSpecs final P8 fat and HSCW predictions, along with calculations performed using the 
equation described above as additional columns. An analysis of variance (ANOVA) on the 9-way factorial 
matrix of inputs was conducted using Genstat (2011) to investigate the dominant effects and interactions. 

4. RESULTS AND DISCUSSION 

Gaining an understanding of the dominant effects and interactions present in the 9-way factorial analysis of 
BeefSpecs inputs is not straight forward. Using an ANOVA for each Yi can help but even estimating only to 
the 7-way interactions results in 501 individual F-tests being considered by the ANOVA table. A further 
complication is simulation output (particularly with deterministic models like BeefSpecs) tends to be rather 
consistent meaning the 
residual error can be quite 
small. The presence of 
‘many’ degrees of 
freedom from the 
comprehensive factorial 
design also results in a 
high proportion of the F-
tests being statistically 
significant, even when 
using the P < 0.01 level. 
For example, when 
considering the BeefSpecs output of final P8 fat depth, the 7-way ‘DOF by frame score by HGP by initial P8 
fat by initial live weight by sex by growth rate’ interaction has F(576, 9504) = 10.5 (P < 0.001), but is virtually 
impossible to interpret.  

When analysing simulation output, it is the relative sizes of the F-values that need to be considered, rather 
than the formal statistical significance levels (Mayer et al. 1994). Table 2 lists a summation of the ANOVA 
table for final P8 fat depth, including R2 (as in Saltelli et al. 2000), which measures the cumulative amounts 

Table 1. Input variables for the factorial sensitivity analysis 
of BeefSpecs 

Inputs Levels 

Sex Steer, Heifer 

Feed Type Grass, Grain 

Hormone growth promotant None, Oestrogen, Androgen 

Breed Type 
British, European, Bos indicus, 3-
way cross 

Days on feed 60, 120, 180 

Frame Score 2, 4, 6, 8 

Initial P8 Fat (mm) 2, 4, 6, 8, 10 

Initial Live Weight (kg) 200, 250, 300, 350, 400 

Growth rate (kg/day) 0.5, 1.0, 1.5, 2.0 

Table 2. Summary of the ANOVA output for predicted P8 fat depth. 

ANOVA Terms Avg. F-values Multiplier (vs. next level) Cum. R2 (%) 

Main effects 248,889,111 48 84.822 

2-way 5,157,629 111 99.342 

3-way 46,433 85 99.942 

4-way 544 5 99.977 

5-way 118 8 99.998 

6-way 14 8 99.999 

7-way 2  100.000 

652



Walmsley et al., The impacts of inputs on the prediction accuracy of BeefSpecs  

of total variation accounted for at each step. Table 2 demonstrates that the majority of information is 
contained at the 3 or 4-way interaction level. The dominant 4-way interaction was ‘DOF by frame score by 
initial live weight by sex’, with F(24, 9504) = 11,231. This interaction contains two input variables (frame score 
and initial live weight) that require either some technical expertise or technical equipment (e.g. cattle scales). 
The estimated sensitivities of final P8 fat depth relative to these inputs are shown in Tables 3 and 4, 
respectively. 

Table 3 shows that final P8 is most sensitive to measurement error in frame score when animals undertake 
longer feeding periods (e.g. 180 days). This sensitivity is particularly evident in low frame-score heifers that 
begin at higher initial live weights. For each unit of error in estimating frame score BeefSpecs will predict 
final P8 with an error of up to 2.3 mm in heifers and up to 1.7 mm in steers. Also evident is that during 
shorter feeding periods (e.g. 60 days) any inaccuracies in the estimation of frame score result in smaller 
errors in the prediction of final P8 fat, particularly when animals have higher frame scores. 

Despite the positive and negative impact errors in initial live weight can have on predicted final P8 fat depth, 
the results in Table 4 indicate that highly accurate recording of live weight is not essential. A 10 kg error in 
initial live weight will result in a maximum error of approximately 0.5 mm in predicted final P8 fat depth. 

Initial P8 fat depth, which is one BeefSpecs input that requires some technical expertise to estimate, was also 
present in a dominant 4-way interaction; ‘frame score by initial live weight by sex by initial P8 fat’, with F(48, 

9504) = 6,255. It was apparent in this interaction that the sensitivities of animals with low initial fat depths (e.g. 
2 to 4mm) were higher than those of animals with higher initial fat depths (e.g. 8 to 10mm). Table 5 shows 
that animals (irrespective of sex) which have lower initial live weights and fat depths are most sensitive to 
errors in initial fat depth, with this sensitivity following a slightly increasing trend as frame score increases. 
Although not presented in Table 5 these sensitivities were found to be more evident for shorter feeding 
periods (60 or 120 days). The average sensitivity of animals across sexes and frame scores with an initial live 
weight of 200 kg and initial fat depth of 2 mm was 1.51. This result means an error in the estimation of initial 
fat depth of 2 mm will result in an error of up to 3 mm in the prediction of final P8 fat depth. 

Table 3. Sensitivity (mm/unit) of final P8 fat predicted by BeefSpecs to the frame score input. 

Frame 

Score 

Initial 

Weight (kg) 

60 Days on Feed 120 Days on Feed 180 Days on Feed 

Heifer Steer Heifer Steer Heifer Steer 

Low 200 -0.45* -0.29 -0.77 -0.60 -1.23 -0.71 

(2 to 4) 250 -0.56 -0.32 -1.00 -0.67 -1.61 -0.87 

 300 -0.65 -0.38 -1.32 -0.73 -2.01 -1.10 

 350 -0.83 -0.47 -1.63 -0.87 -2.29 -1.38 

 400 -0.83 -0.56 -1.49 -1.09 -2.11 -1.66 

High 200 -0.26 -0.17 -0.56 -0.35 -0.67 -0.56 

(6 to 8) 250 -0.30 -0.18 -0.61 -0.39 -0.83 -0.59 

 300 -0.36 -0.19 -0.68 -0.45 -1.08 -0.61 

 350 -0.45 -0.22 -0.86 -0.51 -1.34 -0.68 

 400 -0.53 -0.27 -1.07 -0.58 -1.60 -0.82 
* Bolded values are > 1.50 (absolute values); italicised are < 0.50 (absolute values). 

Table 4. Sensitivity (mm/10 kg) of final P8 fat predicted by BeefSpecs to the initial weight input. 

Initial 

Weight (kg) 

Frame 

Score 

60 Days on Feed 120 Days on Feed 180 Days on Feed 

Heifer Steer Heifer Steer Heifer Steer 

Low 2 -0.09* -0.15 0.03 -0.09 0.28 -0.01 

(200 to 250) 4 -0.13 -0.16 -0.06 -0.11 0.13 -0.08 

 6 -0.16 -0.17 -0.09 -0.14 0.01 -0.09 

 8 -0.17 -0.17 -0.11 -0.16 -0.05 -0.10 

High 2 0.21 0.12 0.35 0.25 0.48 0.38 

(350 to 400) 4 0.21 0.09 0.41 0.16 0.55 0.27 

 6 0.15 0.06 0.31 0.12 0.47 0.18 

 8 0.12 0.04 0.22 0.10 0.36 0.13 
* Bolded values are > 0.40 (absolute values); italicised are < -0.10 (absolute values). 
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Analysis of the sensitivity of HSCW to BeefSpecs inputs provided little information. The final live weight is 
calculated directly (i.e., without any random variation) from initial live weight, growth rate and DOF. HSCW 
is then calculated directly by multiplying final live weight by dressing percentage. As would be expected, the 
ANOVA found HSCW is dependent on these factors only, and is insensitive to other inputs such as frame 
score and initial P8 fat. Also of note is the sensitivity of HSCW vs. initial live weight is simply equal to the 
assumed dressing percentage. This result suggests the ability of producers to estimate dressing percentage 
from past experience and/or data will determine the accuracy with which HSCW is calculated by BeefSpecs. 

5. PRACTICAL IMPLICATIONS 

A general finding from the sensitivity analysis conducted during this study is that the accuracy of the inputs 
into the BeefSpecs fat calculator has important implications for the quality of predictions made. The results 
have particularly highlighted the importance of recording frame score and initial P8 fat depth with the highest 
accuracy. Even though errors in some areas of the input parameter space produce less substantial errors in the 
predictions this should not be used as reason to not record inputs with as higher accuracy as practically 
possible. Recent unpublished data assessed the capability of manual P8 fat depth assessment by industry 
personnel. This data indicates the average difference between manually assessed P8 fat depth on live animals 
and carcasses was 4.55 mm (n=174). This inaccuracy presents a challenge for placing confidence in manually 
assessed P8 fat depths. A recent study has explored the use of 3D camera technology to estimate frame score 
and P8 fat depth in live animals in real-time with some very promising results (McPhee 2013). These results 
indicate P8 fat was estimated with a mean bias of 0.14 mm (root mean square error = 1.1 mm) in a group of 
steers used as a challenge dataset. The development of such technology for use in commercial enterprises 
will dramatically increase both the capability and accuracy of recording such data. Although the sensitivity 
results suggest predictive accuracy is less sensitive to initial live weight the recording of live weight should 
still be taken seriously (i.e. use cattle scales rather than guesstimate). The results demonstrate an error in live 
weight of 50 kg will produce an error of up to 2.5 mm in final P8 fat depth. The slightly different sensitivities 
between heifers and steers also highlight that the accuracy of other inputs should also not be overlooked. 

6. CONCLUSIONS 

The results of the sensitivity analysis indicate that the accuracy with which inputs into BeefSpecs are 
recorded, particularly initial P8 fat, frame score and to some degree initial live weight, has important 
implications for the accuracy of predictions made by BeefSpecs. For this reason the best effort should be 
made to maximise the accuracy with which BeefSpecs inputs are recorded. This in turn justifies future efforts 
to develop more accurate methods to record these inputs. Maximising the accuracy of inputs will result in 

Table 5. Sensitivity (mm/mm) of final P8 fat predicted by BeefSpecs to the initial P8 fat input. 

Initial Frame  Initial Weight (kg) 

P8 Fat Score Sex 200 250 300 350 400 

Low 2 Heifer 1.45* 1.28 1.15 0.88 0.66 

(2 to 4) 2 Steer 1.52 1.37 1.31 1.18 0.81 

 4 Heifer 1.50 1.35 1.23 0.91 0.47 
 4 Steer 1.52 1.39 1.34 1.22 0.84 

 6 Heifer 1.52 1.39 1.28 0.95 0.47 
 6 Steer 1.51 1.38 1.34 1.23 0.87 

 8 Heifer 1.53 1.40 1.31 0.99 0.49 
 8 Steer 1.53 1.40 1.31 0.99 0.49 
High 2 Heifer 1.17 1.00 0.88 0.78 0.81 

(8 to 10) 2 Steer 1.27 1.13 1.03 0.96 0.87 

 4 Heifer 1.23 1.06 0.98 0.87 0.79 

 4 Steer 1.29 1.16 1.07 1.00 0.95 

 6 Heifer 1.27 1.13 1.03 0.95 0.87 

 6 Steer 1.31 1.17 1.08 1.03 0.98 

 8 Heifer 1.30 1.16 1.07 1.00 0.94 

 8 Steer 1.32 1.18 1.09 1.04 1.00 
* Bolded values are > 1.50 (absolute values); italicised are < 0.50 (absolute values). 
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BeefSpecs making the most reliable predictions, which will in turn encourage higher rates of adoption than 
experienced by past DSS and maximise compliance to market specifications to improve beef profitability. 
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