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Abstract: The challenge of sustainable land management is to understand the involved ecosystems, their 
spatial variability, and the impact of human activities, and to ‘configure’ the landscape in the best possible 
way for sustaining natural resources and maximising ecosystem services. We introduce the Land Use Mana-
gement Support System, which addresses system understanding by its environmental integrated modelling 
framework (EIMF) and land-use configuration by its multi-objective spatial optimisation component. 
LUMASS is built on free and open source software libraries and mainly targeted at processing raster data 
sets. The LUMASS EIMF is based on the Orfeo Tool Box (OTB) and the Insight Segmentation and Registra-
tion Toolkit (ITK). OTB/ITK provide advanced functionality for processing big n-dimensional raster data 
sets, such as sequential and multi-threaded processing. The LUMASS optimisation component is based on 
the mixed integer linear programming solver lp_solve and provides the optimisation of areal resource 
allocations. LUMASS supports read and write access of data sets via the GDAL/OGR library as well as 
storage and retrieval of big multi-dimensional raster data by rasdaman. Furthermore, rasdaman’s Petascope 
component provides access to raster data via OGC-compliant web services, such as WCS, WCPS, WPS, and 
WMS. One of the main objectives of LUMASS is to allow non-programmers to develop spatially explicit 
system dynamics models. For that purpose, we developed a user interface for the interactive visual (i.e. icon-
based) development of LUMASS models. The visualisation of spatial (raster and vector) data, attribute 
tables, and charts, is implemented based on Qt widgets provided as part of the Visualisation Toolkit (VTK). 
To support LUMASS model and optimisation applications on cluster environments, we also provide a 
LUMASS command line version (‘lumassengine’). This also allows LUMASS to be run as a backend engine 
in distributed service-oriented architectures as well as being integrated into other component-based EIMF 
(e.g. OMS3, OpenMI), subject to the development of appropriate wrapper classes. The LUMASS EIMF is 
based on the ITK processing pipeline architecture and its fundamental components: data and algorithms (i.e. 
processes).  They are augmented by iterable components that provide the capability to build dynamic and 
hierarchical processing pipelines. An iterable component may either host a single process component, or a 
chain (pipeline) of other model components to build a hierarchical structure of processing pipelines. 
Furthermore, iterable components allow the hosted components to be executed a number of times, thereby 
changing process parameter values with each iteration. Additionally, each model component is assigned to a 
user-specified time level. Execution order and data flow starts at the highest time level and descends to lower 
time levels. This allows users to implement models operating on different time scales and/or to control 
execution order for component initialisation purposes. Selected model components can be saved as XML-
based files and re-used in other modelling exercises. For each component, general and component-specific 
properties, including the assigned values, are stored to build a complete blueprint of a model and its parame-
terisation. Used in conjunction with a version control system, such as git, it facilitates model management 
and governance, especially for revised model implementations. To enable the future development of different 
model views, e.g. as part of a web-application, as well as to enable the ‘lumassengine’ command line applica-
tion, the graphical model representation as displayed in the user interface, is stored in a binary file format, 
and is completely separated from the model structure and parameterisation.  

The free and open source Land Use Management Support System integrates spatial land systems modelling 
and multi-objective spatial optimisation. Its integrated modelling framework allows non-programmers to de-
velop spatially explicit, hierarchical, and dynamic land system models using a visual programming environ-
ment. LUMASS makes integrated modelling available to modellers without requiring any programming 
skills. It supports the development of models operating on big data sets and different temporal scales, and 
supports the exchange and collaboration among modellers by facilitating the management, governance, and 
re-use of model components.  
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1. INTRODUCTION 

The challenge of sustainable land management is to understand the involved ecosystems, their spatial 
variability, and the impact of human activities, and to ‘configure’ the landscape in the best possible way for 
sustaining natural resources and maximising ecosystem services. System understanding and impact assess-
ment is commonly addressed by spatially explicit biophysical models comprising different science domains 
(Argent, 2004), whereas land-use patterns are optimised using spatial multi-objective optimisation tools (e.g. 
Ausseil et al., 2012). We introduce the Land Use Management Support System (LUMASS), comprising an 
environmental integrated modelling framework (EIMF, Rizzoli et al., 2008) as well as a multi-objective 
spatial optimisation tool (Herzig et al., 2013). The complexity of coupled human-natural systems requires 
purpose-built models and does not allow for generic abstraction. Therefore, new models will always have to 
be built. Furthermore, the same system or process can be modelled in different ways, reflecting different 
conceptualisations of a particular process (e.g. stochastic vs. deterministic), the availability of data, or just the 
personal preference of the modeller. In this context, it is desirable to use a modelling framework, which 
supports the flexible development, re-design, and testing of system, sub-system, and process implementa-
tions. Many environmental modelling frameworks have been developed for this purpose. To get an overview 
of available frameworks, basic concepts and applications as documented in the literature, we refer readers to 
the following articles: Argent (2004), Argent et al. (2006), Rizzoli et al. (2008), Jagers (2010), Granell et al. 
(2013), Laniak et al. (2013), and Kelly et al. (2013). The majority of EIMF is targeted at software developers. 
This is especially the case for frameworks that support the development of “coupled component models” 
(Kelly et al., 2013). For example, TIME (Rahman et al., 2003), ModCom (Hilyer et al., 2003), JAMS 
(Kralisch and Krause, 2006), OpenMI (OATC, 2010), and OMS3 (David et al., 2013) require knowledge of a 
general purpose programming language (e.g. Java, C/C++) to develop basic model components, such as the 
implementation of a particular process. Even more sophisticated programming skills are required to build 
components that can deal with multiple scales in space and time as well as big data sets. System dynamics 
modelling environments (e.g. STELLA, www.iseesystems.com, VENSIM, www.vensim.com) do not require 
programming skills to develop complex system models, but often only provide limited spatial modelling 
capabilities (Kelly et al., 2013). Therefore, they have been extended by third-party software packages (e.g. 
SME, Maxwell et al., 2004), to allow for spatially explicit system dynamics modelling (Kelly et al., 2013). 
However, this creates dependence on closed source software systems, which cannot be adapted or extended if 
required. In this paper, we introduce a free and open source EIMF as part of the Land Use Management 
Support System (LUMASS) (Herzig, 2008a). The main objective of the LUMASS EIMF is to allow non-
programmers to develop spatially explicit hierarchical dynamic land system models for system understanding 
and integrated impact assessments. Modelling results may be used as input to the LUMASS spatial optimisa-
tion component (Herzig, 2008b) to maximise land-use performance and ecosystem services (Ausseil et al., 
2012, Herzig et al., 2013). In the remainder of this paper, we describe the LUMASS architecture (Section 2), 
provide an overview of the LUMASS EIMF (Section 3), outline the sample implementation of a simple 
dynamic soil water budget model (Section 4), discuss the presented modelling framework (Section 5), and 
conclude (Section 6).  

2. LUMASS ARCHITECTURE 

An earlier version of LUMASS, based on proprietary GIS software, is discussed by Herzig (2008a,b). In this 
paper, we introduce a revised and improved system exclusively built on free and open source software 
(Figure 1). Each underlying library is supported by a large and active community of users and developers, 
which ensures future development, testing, and bug fixing. The main programming language used is C++ and 
all libraries have been, or are currently used on multiple platforms and potentially allow a future version of 
LUMASS to be compiled on different platforms.  

2.1. Data Processing 

LUMASS provides two main processing components, an EIMF and a multi-objective spatial optimisation 
component. The EIMF is primarily targeted at processing raster data sets to support the development of 
cellular automata-based models (e.g. White et al., 1997), and the processing of remote-sensing images and 
digital elevation models, and to facilitate overlay operations (e.g. map algebra), as well as sequential and 
parallel processing of large data sets. The implementation of the LUMASS EIMF is based on the Orfeo Tool 
Box (OTB) (OTB Development Team, 2013) and the Insight Segmentation and Registration Toolkit (ITK) 
(Ibanez et al., 2005). ITK provides advanced functionality for processing big n-dimensional raster data sets, 
such as sequential and multi-threaded processing, provided by its processing pipeline architecture. OTB 
extends ITK by specific capabilities and algorithms for processing high-resolution remote-sensing images. 
OTB and ITK significantly facilitate the implementation of core processing components for the LUMASS 
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EIMF (Section 3). The LUMASS optimisation 
component is based on the mixed integer linear pro-
gramming solver lp_solve (Berkelaar et al., 2004) 
and provides the spatial optimisation of areal re-
source allocations (Herzig, 2008b, Herzig et al., 
2013). 

2.2. Data Storage and I/O 

LUMASS supports read and write access to data 
base as well as file-based data sets. Raster and vec-
tor data stored in the most common two-dimen-
sional data formats can be accessed via the GDAL/ 
OGR library (GDAL, 2012). Storage and retrieval 
of multi-dimensional raster data sets is provided by 
rasdaman. Rasdaman is middleware and extends 
standard relational data bases with the capability to 
store and retrieve n-dimensional raster data sets 
(arrays) of unlimited size (Bauman et al., 1997). 
Rasdaman’s Petascope component also provides 
web-based access to rasdaman image data via 
OGC®-compliant (OGC: Open Geospatial Consor-
tium) web services, such as Web Coverage Service 
(WCS), Web Coverage Processing Service 
(WCPS), Web Processing Service (WPS), as well as Web Mapping Service (WMS). Specific input/output 
classes (adaptors), implemented as part of OTB/ITK and VTK, translate the data structures between the 
storage access layer and the actual data processing libraries.  

2.3. User Interface and Visualisation 

One of the main objectives of LUMASS is to allow non-programmers to develop spatially explicit system 
dynamics models. For that purpose, we developed a user interface for the interactive visual (i.e. icon-based) 
development of LUMASS models (Figure 4). For the implementation of the user interface, as well as the 
LUMASS EIMF classes (Figs 2 and 3), we used the Qt C++ programming framework (Qt Project, 2013). 
This provides sophisticated cross-platform user interface components (widgets) and C++ language 
extensions, such as the Meta-Object System. The latter allows object properties to be queried at run-time and 
enables dynamic graphical user interface components, e.g. for the configuration of model components. The 
visualisation of spatial (raster and vector) data, attribute tables, and charts, is implemented based on Qt 
widgets provided with VTK. Raster data sets, represented by OTB/ITK classes for input/output as well as 
processing, are mapped onto VTK classes for visualisation purposes. Both libraries provide specific import 
and export classes that allow for a seamless connection of the ITK processing pipeline with the VTK 
visualisation pipeline (Schroeder et al., 2006).  

2.4. LUMASS Engine 

To support scenario-based analyses or Monte Carlo simulations in the context of sensitivity or uncertainty 
assessments, we also provide a command line-based application (‘lumassengine’). It runs geospatial models 
and optimisation scenarios based on LUMASS model and optimisation settings files, respectively. This not 
only allows LUMASS to be used on compute clusters, but also as a backend-processing engine in distributed 
service-oriented architectures. Furthermore, it facilitates the integration into other component-based EIMF, 
such as OMS3, or OpenMI, subject to the development of appropriate wrapper classes, which would allow 
LUMASS models to be linked with OMS3 or OpenMI components respectively.  

 

 

 

Figure 1. LUMASS architecture and underlying 
software libraries. 
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3. LUMASS MODELLING FRAMEWORK 

3.1. Concept and Design 

The fundamental building blocks of the ITK pipeline architecture, data and algorithms, are represented by the 
NMItkDataObjectWrapper and NMProcess classes respectively. They are wrapper classes around the corre-
sponding template-based OTB/ITK classes and provide access to the underlying base class objects as well as 
information about the template parameters. This meta-data is represented by Qt properties and can be set and 
queried at run-time. NMProcess is an abstract class and only provides general public methods (e.g. update()) 
and properties, such as the list of inputs and data types. Concrete process implementations are derived from 
NMProcess and extend the list of properties by process specific parameters. Additional to the ‘pipeline 
classes’, the LUMASS modelling framework comprises a set of NMModelComponent-based classes (Figure 
2) to manage data and process objects to allow for the implementation of hierarchical, dynamic models. The 
abstract base class provides common model component properties such as a description, the time level on 
which the object resides, as well as the list of input components. Dynamic pipelines and structural hierarchy 
(i.e. aggregation of model components) are provided by NMIterableComponent-derived classes. If only small 
data sets are being processed, users can avoid reading and writing data sets at the beginning and end of each 
pipeline, by using a data component object (NMDataComponent). It explicitly allows model data to be kept 
in the main memory of the computer during model execution. Iterable components either host a single pro-
cess object (henceforth called process component) or a chain of other model components (Figure 3), imple-
mented as a doubly linked list. Each LUMASS model comprises at least one iterable component, henceforth 
referred to as the root component, which forms the basement of the hierarchical model structure representing 
time level zero. All additional components added to the model are hosted by the root component and are 
initially also placed on time level zero. The user can adjust the time level of individual components via the 
user interface. However, all components comprised by a particular processing pipeline have to share the same 
time level and host component. LUMASS ensures that the lowest time level assigned to a component is zero 
and that the time level of each individual model component is at least as high as the time level of its host 
component. Individual model components sharing the same host component can be aggregated, whereby 
LUMASS creates a new iterable component and places the selected model components inside it. Of the two 
different sub-classes of iterable components (Figure 3), only the sequential iteration component has been 
implemented yet. The number of iterations is represented as a component property of the class and can be 
specified at run-time. This enables the representation of time periods subdivided into a discrete number of 
intervals. The conditional iteration component rather represents a logical control structure, which could be 
used (once implemented), for example, to implement allocation procedures of land-use/land-cover change 
models. However, at each iteration step, process-components may assign new process parameters to its 
underlying process objects. Most process properties actually represent a list of parameters containing 
individual parameters for each iteration step, allowing for time-dependant process behaviour. Since this also 
includes process inputs, processing pipelines (i.e. 
their linkage) may change over time, for example 
to control process initialisation and finalisation 
(e.g. temporal or spatial data aggregation).  

3.2. Model controller and model execution 

Each LUMASS instance owns exactly one model 
controller instance, which manages an internal 
model register and controls the lifetime of all 
model component objects. The model controller 
also creates the root component of the LUMASS 
model and controls and monitors model execu-
tion and abortion. Each iterable model compo-
nent can be executed individually to facilitate 
model testing without having to isolate the par-
ticular model component. However, model exe-
cution only applies to those components hosted 
by the particular iterable component. Hence, any 
required input data needs to be generated be-
forehand. Upon model execution, as long as no 
other model is currently running, the model con-
troller calls update() on the user specified iter-

Figure 2. LUMASS model component classes 
(generated by doxygen 1.7.6.1; www.doxygen.org).  

Figure 3. Model component collaboration diagram 
(generated by doxygen 1.7.6.1; www.doxygen.org). 
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able component. The component then identifies all processing pipelines on the individual time levels hosted 
by the component. The pipelines are then executed sequentially in the order of time levels, starting with the 
highest time level. Execution order of pipelines sharing the same time level is arbitrary; hence they must be 
independent of each other. If any of the required inputs to a particular component is not available, model 
execution aborts. Because of the sequential processing order of model components and the restriction of 
parallel processing to the data set level, dead locks are effectively avoided. Following the execution order, 
data flows from higher time levels to lower time levels. Therefore, higher time levels represent processes 
occurring in shorter intervals (e.g. daily processes), and lower time levels represent processes occurring in 
relatively longer intervals (e.g. monthly or annual processes). However, time levels may also be used to 
specifically control the execution order and data flow in the model, for example to control the initialisation of 
model components.  

3.3. Model Serialisation 

Selected model components can be saved as XML-based files and re-used in other modelling exercises. For 
each component general and component specific properties including the assigned values are stored to build a 
complete blueprint of a model and its parameterisation. Used in conjunction with a version control system, 
such as git, it facilitates model management and governance, especially for revised model implementations. 
To enable the future development of different model views, e.g. as part of a web-application, as well as to en-
able the ‘lumassengine’ command line application, the graphical model representation as displayed in the 
user interface, is stored in a binary file format and is completely separated from the model structure and para-
meterisation.  

4. SAMPLE MODEL IMPLEMENTATION 

Figure 4 shows a screenshot of the sample implementation of a simple, spatially explicit single layer soil 
water budget model as represented in the graphical user interface of the modelling framework. The model 
comprises process components, depicted by the gears icon, data components, depicted by the coloured grid, 
and an iterable component depicted as blue pane. The model operates on three time scales representing the 
data initialisation phase on time level 2, the soil water budget and runoff calculation over a number of time 
steps on time level 1, and finally a phase in which the resulting data sets are written to the database. This 
implementation only uses small raster data sets, which can be kept in the main memory of the computer, as 
indicated by the use of data components. The iterable component on time level 1 calculates the actual soil 
water budget and the runoff, based on the initial data 
sets read in the initialisation phase, as well as based 
on the time series of maps representing precipitation 
and evapotranspiration. However, from the second 
iteration onwards, the map algebra component chan-
ges its set of input components. It replaces the initial 
soil water content data set with the actual soil water 
content calculated as result of the previous iteration. 
After the soil water budget and runoff at the end of 
the given time period has been calculated, the results 
are written into the data base (time level 0). 

5. DISCUSSION 

The challenge of complex spatial systems modelling 
has been addressed by EIMF, such as TIME 
(Rahman et al., 2003), ModCom (Hilyer et al., 2003), 
JAMS (Kralisch and Krause, 2006), and OpenMI 
(OATC, 2010). However, the majority of frame-
works are tailored to software developers (e.g. 
OMS3, David et al., 2013) rather than modellers. 
Voinov and Shugart (2013) point out that this type of 
systems is mostly concerned with the coupling and 
integration of software components. They hardly 
provide any out-of-the-box functionality to deal with 
complex spatial modelling issues, such as multiple 
spatial and temporal scales or big data sets. They are 

 

Figure 4. Screenshot of a simple dynamic soil 
water budget model as represented in the 
LUMASS model development interface 

(descriptions of component types and time levels 
are not part of the user interface representation). 
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very flexible and well suited to integrate legacy code, but they are only useful to modellers with substantial 
programming skills or to large (i.e. rich) projects and agencies that can afford to employ a team of software 
developers working alongside domain-specific modellers. Many modellers do not have such available 
resources, nor do they have sufficient programming skills to implement new algorithms and model 
components. The LUMASS EIMF is tailored to modellers to support the creative, visual development of 
spatially explicit complex system models. It provides most of the desirable features of modern component-
based EIMF as given by Rizzoli et al. (2008). It currently does not support the integration of components 
developed in other EIMF; however, wrapper classes for components of other EIMF may be developed, e.g. 
for OMS3 and OpenMI, to make them available within the LUMASS EIMF. Likewise, wrappers around the 
‘lumassengine’ can be developed to allow for the integration of LUMASS models in other EIMF. Unlike 
other frameworks (e.g. OMS3, ModCom, OpenMI), LUMASS explicitly supports the development of models 
operating on big data sets, provided by the support of the OTB/ITK pipeline architecture and a direct link to 
the rasdaman data base. Furthermore, the LUMASS EIMF implementation allows for the development of 
hierarchical dynamic models operating on different temporal scales, without requiring any additional 
programming by the modeller. Hence, LUMASS allows the modeller to focus on the domain specific aspects 
of model design, component implementation, and linkage, thus minimising the risk of developing 
‘integronsters’ (Voinov and Shugart, 2013) through focusing too much on the software challenge, rather than 
on the modelling challenge (Voinov and Shugart, 2013).  

6. CONCLUSIONS 

The free and open source Land Use Management Support System integrates spatial land systems modelling 
and multi-objective spatial optimisation. Its integrated modelling framework allows non-programmers to 
develop spatially explicit hierarchical dynamic land system models using a visual programming environment. 
LUMASS makes integrated modelling available to modellers without requiring any programming skills. It 
supports the development of models operating on big data sets and different temporal scales, and also 
exchange and collaboration among modellers by facilitating the management, governance, and re-use of 
model components.  
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