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Abstract: The problem considered in this paper is motivated by fleet sizing questions faced by the Royal 
Australian Navy (RAN) and Customs and Border Protection (CBP). One possible requirement of a fleet is 
that it should be able to provide complete coverage of a set of stipulated patrol regions located around 
Australia’s maritime approaches. This means that there must be at least one patrol boat on station in each 
patrol region at any given time. This is complicated by the fact that patrol boats cannot perform patrol 
operations indefinitely. Before a maximum operational time has expired, a patrol boat must return to a port 
for a mandatory resource replenishment break, such as crew layover time, maintenance or refuelling. 

In the context of meeting the stated patrol capability, a natural question which arises is the following: What is 
the minimum number of patrol boats required to provide a set of patrol regions with complete coverage over 
a planning period? This problem must be addressed by taking into consideration the operational performance 
of the patrol boats, the geography of the patrol network (consisting of patrol regions and ports), and the 
duration of a mandatory resource replenishment break. A solution to the problem will consist of a schedule 
for each patrol boat, containing all the information on its activities throughout the planning period, including 
where and when it patrols (and for how long), and at which ports it replenishes resources (and when). 

Our approach to the problem is based on column generation – an advanced optimisation technique employed 
within linear and integer programming to solve problems in which the number of variables (columns in the 
constraint matrix) is too large for the direct application of standard linear programming algorithms. The 
technique builds upon the revised simplex algorithm of linear programming by adding candidate variables to 
a restricted master problem. Variables are added sequentially to the restricted master problem by solving an 
optimisation subproblem (called the pricing subproblem) until no more variables are found to price out 
favourably. In its pure form, column generation addresses continuous variable problems, and just as the 
standard simplex algorithm is augmented with branch-and-bound to solve integer problems, column 
generation is augmented with branch-and-price. 

In the context of scheduling patrol boats, a decision variable represents a feasible schedule for a patrol boat 
over the planning period. The restricted master problem is a set covering model, for which it is relatively 
straightforward to construct an initial feasible solution. The decision variables are generated via pricing 
subproblems – this involves solving shortest path problems over a custom designed resource-space-time 
network, which is constructed as a directed acyclic graph. The column generation algorithm is incorporated 
into a branch-and-price framework, where branching occurs on the arc variables of the underlying 
subproblem network. The branch-and-price technique is applied over a planning period of sufficient length so 
as to find cyclical patrol patterns for the boats. 

We outline the column generation approach to the problem of routing and scheduling patrol boats with 
mandatory replenishment breaks and conduct a sensitivity analysis on an example patrol network. The results 
show how the column generation approach may assist decision makers by highlighting the tradeoffs between 
patrol boat numbers, endurance, replenishment break duration and achieving complete patrol coverage with 
sufficient schedule slack. 
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1. INTRODUCTION 

1.1. Problem Description 

The problem relates to finding a set of 
patrol boat schedules which will ensure a 
continuous patrol presence in a predefined 
set of nominated maritime patrol regions. 
Given a set of patrol regions which are 
required to have at least one boat on patrol 
at any given time, the problem is to 
determine the minimum number of patrol 
boats required to meet the stated objective, 
subject to a number of operational and 
geographical constraints. This is a 
resource-constrained optimisation problem, 
as an individual patrol boat cannot perform 
patrol operations for an indefinite period of 
time. Patrol boats consume resources as 
they perform their duties, and therefore, 
each must return to a port on a regular basis 
in order to replenish depleted resources 
(e.g. refuelling, maintenance, or crew 
layover). The schedules for the boats must 
be feasible with respect to the geographical 
network (consisting of the patrol regions 
and ports), the capability of the patrol boats 
(that is, the maximum endurance), and the 
duration of the mandatory replenishment 
break (layover time), which occurs when a 
patrol boat returns to port. The diagram in 
Figure 1 is an example of a patrol operations network, consisting of four ports and seven patrol regions. 

The problem, as stated above, is a combined routing and scheduling problem – not only do the routes of the 
patrol boats need to be determined, but also the timing of the activities that occur along the routes (e.g. for a 
given patrol boat, the duration of the patrol time at each patrol region it visits must be determined, as well as 
the timing of transitions between patrol regions and ports along its route). The problem, therefore, is to find 
the minimum number of patrol boats which can be routed and scheduled in a synchronous manner so as to 
ensure that there are no vacancies in patrol coverage. While superficially similar to the well-known vehicle 
routing problem with time windows (VRPTW), our problem is inherently different due to the requirement for 
continuous patrol presence. Henceforth, we refer to our problem as the patrol boat scheduling problem with 
complete coverage (PBSPCC). 

1.2. Related Work 

The problem, for the specific purposes outlined above, has not yet been examined in the academic literature. 
It is, however, related to a small number of problems from a collection of disparate domains, namely, patrol 
boat routing for fisheries surveillance, police car scheduling for accident hot spots, and scheduling unmanned 
aerial vehicles (UAVs) for long-term missions. We briefly outline the nature of these problems and the 
modelling and solution approaches that have been applied to them. 

The work of Millar and Russell (2012) considered routing a fleet of patrol vessels over a geographical 
network of sea-based fishing grounds in order to maximise the total deterrence value of the surveillance 
effort. Patrol vessels in this surveillance model are routed through various pre-determined fishing grounds. A 
patrol vessel spends a pre-allocated amount of time at a fishing ground before moving to another fishing 
ground or back to port, subject to budget and time constraints. The scope of the problem is for short-term 
routing plans, since the surveillance prioritisation of fishing grounds occurs on a regular basis. The model is 
formulated via an extensive integer program, and since the size of the considered patrol vessel fleet is small 
and the planning horizon is short, it can be directly solved with state-of-the-art commercial solvers. There are 
some key differences between this formulation and the PBSPCC. These are the objectives, the 
predetermination of patrol time for each visit, the short planning horizon, and the omission of mandatory 

 
Figure 1. An illustration of the underlying patrol 

operations network and the possible states of the boats. 
The requirement is to have at least one boat on station in 
each patrol region at all times. The pink shaded circles 
are indicative of maritime patrol regions, but a region 

itself is represented by a blue vertex. Ports are displayed 
as orange vertices. An orange loop indicates that a boat is 
replenishing at a port (layover), a white loop indicates a 
boat at idle in port, and a blue loop implies that a boat is 
on active patrol. The black arcs represent feasible transit 

routes through the network and a red arrow is used to 
designate a boat in transit. 
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replenishment breaks for patrol vessels. It is also noteworthy that this problem routes patrol vessels 
independently, and hence, there is no need to synchronise the tasked activities. 

The scheduling of police cars to provide maximum patrol coverage to a set of predefined accident hot spots 
with time windows has been recently studied by Keskin et al. (2012). Given a set of highway locations and 
time intervals at which traffic accidents have a high probability of occurring, the problem is to find patrol 
routes for a set of police cars so that the aggregate coverage of all accident hot spots is a maximum. This 
problem is modelled with respect to a mixed integer programming formulation and solved with recourse to 
heuristic techniques (local search and tabu search), due to the inability of state-of-the-art commercial solvers 
to find solutions. A continuous time modelling paradigm is used for the integer program and replenishment 
breaks for the police cars are not taken into consideration. Thus, while this problem is related to the PBSPCC 
in the aspect of providing patrol coverage to dispersed geographical locations, it does not consider 
replenishment or the requirement for complete patrol coverage. The problem is also not concerned with the 
question of long-term schedules. 

The research conducted by Kim et al. (2013) considered the planning of mission trajectories for a system of 
resource capacitated UAVs. The problem is concerned with utilising a fleet of UAVs and a number of 
refuelling stations to provide “long-term mission fulfillment.” A set of predefined space-time locations 
(referred to as split jobs) are required to be covered by exactly one UAV, subject to fuel capacity constraints. 
Like the approach taken by Keskin et al. (2012), the model is a mixed integer programming formulation, and 
is solved with a customised genetic algorithm. This problem is closely related to the PBSPCC in that it 
handles resource replenishment and the requirement for complete coverage to all split jobs. A fundamental 
difference, however, is the incorporation of predefined flight trajectories which the UAVs must follow. 

A common characteristic of these studies is the way in which the respective problems are modelled. The 
position of each paper has been to write out an extensive integer programming formulation, which in some 
cases is nonlinear and requires linearisation in order to be amenable to commercial solvers. An additional 
drawback to writing out an all-encompassing integer program is the issue of computational intractability if 
replenishment breaks are considered. For example, the formulation used by Kim et al. (2013) introduces a 
large number of variables, such as Xijkr, which has four indices and takes the value 1 if UAV k processes split 
job j after split job i during its rth flight, and 0 otherwise. Our approach, which is based on column 
generation, differs from the standard approach taken in previous studies of related problems.       

2. A COLUMN GENERATION APPROACH 

Column generation (see Desrosiers and Lübbecke, 2005) is a technique for solving linear programming 
problems by dealing with the columns of the constraint matrix (or variables of the problem) in an implicit 
manner. The implicit handling of problem variables was first proffered by Ford and Fulkerson (1958), but 
was not put to practical use until Gilmore and Gomory (1961). The column generation process involves a 
coordinated cycling between two problems: a restricted master problem and a subproblem. The restricted 
master problem is a truncated rendering of a problem which involves too many variables to write down 
explicitly. By solving the restricted master problem as a linear program and obtaining its dual variables, a 
subproblem can be solved to determine a new column (variable) to add to the restricted master problem. The 
subproblem can accomplish this by casting the pricing step of the simplex algorithm (find a variable with 
negative reduced cost to enter the basis) as an optimisation problem. The process iterates between the 
restricted master problem and the subproblem, terminating when no further variables are determined to price 
out favourably. The column generation technique can be embedded within a branch-and-bound tree structure 
in order to solve large-scale integer programming problems (see Barnhart et al., 1998). Before outlining the 
construction of the restricted master problem and subproblem for the PBSPCC, we will introduce the 
overarching mathematical descriptors for the problem. 

2.1. Problem Data 

A patrol network is a directed graph ( , )G V A= , where the set of vertices {1, , }V n= …  represents the 
number of distinct spatial regions and A  is the set of directed arcs, that is, the set of feasible transitions (in 
space) between any two regions. The set of vertices is the union of two mutually exclusive sets, the set of 
ports port {1, , }V m= …  and the set of patrol regions patrol { 1, , }V m n= + … . The number of ports is 

1m ≥ , where m n< , and the number of patrol regions is n m− . Associated with each arc ( , )i j A∈ , is a 
positive and integer-valued travel time, which we denote ijt +∈ ] . (Note: integer-valued travel times are not 
mandatory, so long as all travel times can be expressed as integer multiples of the time discretisation.) 
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The patrol boat maximum endurance is ET +∈ ] . This is the maximum duration of time that can be spent at 
economical cruising speed. It is assumed that a patrol boat travels at economical cruising speed while 
patrolling in a region and while transiting between any two spatial locations. A patrol boat must return to a 
port before the duration of its total travel time has reached the maximum endurance threshold. Once returning 
to port, a patrol boat remains there for a mandatory replenishment break (the layover time) given by 
RT +∈ ] . The planning period is T +∈ ] , where E RT T T≥ + . 

The requirement is that there be at least one patrol boat on station (that is, maintaining a patrolling presence) 
at all times in each patrol region. The planning period is divided into discrete intervals of time, according to 
the discretisation: {1, , }TΓ = … . For a given patrol region patroli V∈ , we require that there be a patrol boat 
on station for all time intervals t ∈ Γ . We define a patrol period to be a pairing of a discrete time interval 
and the index denoting a patrol region, that is, a patrol period is an element of the set: 

patrol   {( , ) | , }i t i V t= ∈ ∈ ΓL  (1) 

If P  is the set of all feasible patrol boat schedules, we define the binary parameter pa A  to be equal to 1 if 
patrol period ∈A L  is patrolled in schedule p P∈ , and 0 otherwise. In addition, we introduce the binary 
decision variable pλ , which is equal to 1 if schedule p P∈  is selected in the solution, and 0 otherwise. Let 

pc +∈ ]  be the time spent on patrol for schedule p P∈  and pc +∈ ]  be the time not spent on patrol, so 

that  ,p pT c c p P= + ∀ ∈ . We define pic +∈ ]  to be the time spent on patrol in region patroli V∈  for 
schedule p P∈ . Finally, let mink  be a lower bound on the minimum number of schedules and let minτ  be 
the theoretical minimum time a boat can spend in a state of non-patrol over the planning period T . 

2.2. The Restricted Master Problem 

The objective is to find the minimum number of patrol boats that will be able to supply every patrol region 
with complete coverage over the planning period. Since the number of feasible patrol boat schedules is too 
large to write down explicitly, the restricted master problem is constructed with a subset of the full set of 
feasible patrol boat schedules P P′ ⊂ . The restricted master problem takes a set covering formulation with 
additional bounding constraints as follows (corresponding dual variables are indicated in parentheses): 

min ,pp P
λ′∈∑    subject to:  (2) 

   1,p pp P
a λ′∈

≥ ∀ ∈∑ A A L  [πA ] (3) 

p pp P
c λ′∈

≥∑ L  [α ] (4) 

patrol   ,pi pp P
c T i Vλ′∈

≥ ∀ ∈∑  [ iβ ] (5) 

min minp pp P
c kλ τ′∈

≥∑  [ γ ] (6) 

minpp P
kλ′∈

≥∑  [ δ ] (7) 

   0,p p Pλ ′≥ ∀ ∈  (8) 

The objective function (2) is to minimise the number of patrol boats used. The constraints given by (3) ensure 
that there is at least one patrol boat on station in each patrol region at all times. Constraints (4) through to (7) 
relate to various bounds that can be inferred from the patrol operations network and the capability of the 
patrol boats and are included to speed up the column generation process. In constraint (4), we have a bound 
on the minimum number of patrol hours required while (5) pertains to the bound on the minimum number of 
patrol hours required for individual patrol regions. Constraint (7) is a bound on the minimum number of 
patrol boats, and (6) places a bound on the minimum number of hours not spent on patrol. Finally, (8) 
stipulates non-negativity on the schedule decision variables. (The integrality conditions on the decision 
variables are relaxed, as column generation is concerned with solving the linear programming relaxation of 
the integer problem.) The dual variables for the constraints are determined when the linear program (2) – (8) 
is solved, and these are used to feed information to the subproblem in order to find new columns / variables 
to add to the restricted master problem. 
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2.3. The Subproblem 

The subproblem construction that we have developed for the PBSPCC is a directed acyclic graph which 
implicitly accounts for resource consumption and replenishment along a schedule’s trajectory through space 
and time. The subproblem network accounts for patrol boat transitions in space and time and ensures that 
boats return to a port for replenishment before their resource levels are depleted. An important feature of the 
network’s design is that the subproblem can be solved with a pure shortest path algorithm (edge relaxation on 
a topologically sorted vertex list) due to the way in which resource consumption and replenishment are 
encoded. Our design was chosen for ease of extensibility and to handle multiple replenishment breaks. 

The underlying network is a resource-space-time (RST) graph, which we define to be a directed acyclic 
graph ( , )H U B= , where U  is the set of vertices, B  is the set of arcs and each vertex in this graph has an 
associated triple ( , , )v d t . Here, v V∈  is an index of a patrol region or port, d  is an integer-valued measure 
of the resource level of a patrol boat at that location, and {0}t ∈ Γ ∪  is the time instance. In this sense, each 
spatial location is represented as a layered series of vertices. The vertical layers are indicative of how much 
resource has been consumed at that location, and the horizontal position is indicative of the time interval. 
Under this paradigm, ports are handled differently to patrol regions. Ports have two layers of vertices (one for 
the un-replenished state and one for the replenished state), which are connected by directed arcs representing 
the duration of the replenishment break. 

As an illustration of this concept, consider the diagram in Figure 2. This is an RST graph for a patrol network 
with one port (blue vertices) and two patrol regions (pink vertices for region 01, and green vertices for region 
02). The horizontal spacing between vertices is indicative of the time discretisation, while the vertical layers 
represent the possible resource levels for a given location and time period. Blue arcs are for replenishment at 
port, whereas orange arcs describe a patrol boat sitting idle in port. The black arcs are used to describe a boat 
on patrol in a patrol region, and all other arcs represent feasible transitions between the various spatial 
locations. The patrol periods that need to be covered are demarcated by the dashed vertical lines. 

 

For the RST network, we define binary decision variables ijx  to be 1 if arc ( , )i j B∈  is used, and 0 
otherwise. We define patrolB B⊂  as the set of all patrol arcs. The function : Bφ → L  maps patrol arcs to 
their respective patrol period index and the function : B Vψ →  maps patrol arcs to their patrol region 
index. Each arc flow variable has an associated cost ( ijc ) and travel time ( ijt ). The costs on the arc variables, 
which may be negative, are expressed in terms of the restricted master problem dual variables as follows: 

( ) patrol   

   otherwise                                       
( , ) ( , ) , ( , )

,
i j i j ij

ij
ij

t i j B
c

t
φ ψπ α β

γ

⎧− − + ∈⎪⎪⎪= ⎨⎪−⎪⎪⎩
 (9) 

At each iteration of the column generation algorithm, the subproblem determines whether there is a path p 
through the RST network with minimum negative reduced cost, as given by (10). If a negative reduced cost 
path exists, it is added as a new column in the restricted master problem. 

( ){ }is a feasible path*
( , )

argmin 1 |ij iji j p
r c x pδ∈= + −∑  (10) 

SinkSource

Port

Patrol

Replenish

Arcs

Vertices

Transit

Port Region

Patrol Region 01

Patrol Region 02

 
Figure 2. An illustrative example of the underlying RST subproblem network.  
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2.4. Branch-and-Price 

The column generation procedure iterates between the restricted master problem and the subproblem until no 
more columns can be found with negative reduced cost. When termination occurs, we have a solution to the 
linear relaxation of the integer problem. This is called column generation at the root node. By examining the 
flow of the variables on the underlying subproblem network, we can embed the column generation process 
into a branch-and-bound tree (this is called branch-and-price). It is important to note that the branching is on 
the subproblem arc flow variables, not on the restricted master problem variables. This preserves the integrity 
of the subproblem’s structure, allowing it to remain unaltered as we move throughout the branch-and-bound 
tree. The branching rule we have adopted is depth-first search, with branching terminating when an optimal 
integer solution has been found by pruning the tree with the bounds produced by column generation. 

3. COMPUTATIONAL EXPERIMENT (SENSITIVITY ANALYSIS) 

The column generation approach has been tested by applying it to an 
example patrol network, characterised by three ports and seven patrol 
regions (Figure 3). This example network may be indicative of ports 
based on a central island with the requirement to supply complete 
coverage to the surrounding designated patrol regions. The maximum 
transit time between any two locations is 3 time units (e.g. moving 
from patrol region 05 to patrol region 08), and the smallest is 1 time 
unit (e.g. moving from patrol region 05 to patrol region 06). 

The column generation algorithm, via the pricing subproblem, seeks 
to find schedules (for the minimum number of patrol boats) which 
behave as cyclic permutations over a period of T  or 2T , where 

E RT T T= + . Cyclical schedules provide a straightforward way of 
ensuring that a schedule can be extended indefinitely into the long-
term future, providing each patrol boat with an ongoing and regular 
set of activities. This is made possible by the layers in the RST 
network design and is achieved through a customised heuristic, which 
cuts off integer solutions which cannot be extended into the next planning period. An outline of this heuristic 
is beyond the scope of this paper and its exposition will be a matter for a future publication, along with more 
extensive computational testing. An illustration of a cyclical scheduling solution is shown in Figure 4. 

 
The computational tests were performed by varying the maximum endurance of the patrol boats between 10 
time units and 35 time units and varying the length of the mandatory replenishment period at port from 0 
time units to 5 time units. The time to solve on a 3.16 GHz dual-core desktop using CPLEX 12.2 ranges from 
a few seconds to a few minutes, depending on the length of the planning period. For each pairing of 
maximum endurance and replenishment break, the minimum number of patrol boats was recorded and the 
amount of patrol coverage supplied (100% being the minimum requirement). The behaviour of the minimum 
number of patrol boats required and the patrol coverage effort can be seen in Figure 5a and Figure 5b, 
respectively. (All results are given with respect to cyclical schedules over a period of T  or 2T .) 

Figure 5a shows how the number of patrol boats changes with maximum endurance and replenishment time. 
Unsurprisingly, the numbers decrease as endurance increases and replenishment time decreases. This type of 
chart can be used by decision makers to set performance goals for patrol boats based on desired numbers. 
Furthermore, decision makers can derive insight into the fragility of the patrol boats’ capability to meet the 
complete coverage requirement by looking at the level of patrol coverage (schedule slack) afforded by each 
combination of maximum endurance and replenishment time. Figure 5b illustrates this, showing the excess 

(1) |06|05|05|05|05|05|05|05|05|05|05|05|05|05|05|05|05|05|05|05|00|06|06|06|06|06|06|06 
(2) |08|08|08|08|08|08|08|..|01|..|07|07|07|07|07|07|07|07|07|07|07|07|07|07|07|08|08|08 
(3) |05|05|04|04|04|04|04|04|04|04|04|04|04|04|04|04|04|04|00|05|05|05|05|05|05|05|05|05 
(4) |04|04|04|03|03|03|03|03|03|03|03|03|03|03|02|09|09|09|09|09|09|09|09|09|09|09|09|09 
(5) |09|09|09|09|09|09|09|09|09|09|09|09|02|03|03|03|03|03|03|03|03|03|03|03|03|03|03|03 
(6) |03|03|03|03|02|..|08|08|08|08|08|08|08|08|08|08|08|08|08|08|08|08|08|08|08|08|..|00 
(7) |06|06|06|06|06|06|06|06|06|06|06|06|06|06|06|06|06|06|06|06|06|06|00|..|07|07|07|07 
(8) |07|07|07|07|07|07|07|07|07|07|07|09|09|09|09|09|01|04|04|04|04|04|04|04|04|04|04|04  

Figure 4. An optimal scheduling solution for the example network, where the maximum endurance 
(TE) is 28 time units and the replenishment break (TR) is 0 time units. The solution is a cyclic 

permutation of schedules over the planning period (T), with the identity mapping obtained on 5T. 
Schedules (1) – (3) each map to themselves. Schedule (4) is extended by appending schedule (5), which 

is continued by (6), then subsequently by (7) and (8), upon which we are returned to schedule (4). 

000102

03 04 05

06

0708

09 2

1

3

 
Figure 3. An example network 

consisting of three ports and 
seven patrol regions, with 

indicative travel times shown. 
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patrol coverage for replenishment times of 2 and 4 time units. We note the steep drop in excess patrol 
coverage whenever the number of boats decreases by one. Charts of this type, when used in conjunction with 
a patrol boat numbers chart, may inform decision makers of the marginal return gained by increasing the 
maximum endurance. For a set of schedules P over T, the excess patrol coverage is: 

( )patrol Patrol Coverage 1% 100 p pp P
T V c λ−

∈
= × × ∑  (11) 

4. CONCLUSIONS 

We have demonstrated how a column 
generation approach may be applied to the 
problem of scheduling and routing a fleet of 
patrol boats over a patrol network to 
provide complete coverage on an ongoing 
basis. The model is expressed succinctly 
through a restricted master problem in 
which patrol boat schedules are represented 
implicitly. This is a departure from extant 
approaches to related problems which have 
been modelled as pure integer programs. 
Such formulations have a greater tendency 
to become computationally intractable and 
therefore must be solved heuristically. The 
subproblem utilises a modelling paradigm 
in which resource consumption and 
replenishment are encoded into the network 
construction. This enables the subproblem 
to be solved with a pure shortest path 
algorithm. Computational tests on an 
example network show that this approach 
can be used to find cyclical schedules. The 
technique can be used to compare various 
options for patrol boat fleet sizing in terms 
of maximum endurance, replenishment 
break selection and the amount of schedule 
slack. Future work will examine the 
applicability of the column generation 
technique to a variety of patrol networks. 
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Figure 5. (a) Sensitivity analysis – number of patrol 
boats, (b) Sensitivity analysis – patrol coverage.  
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