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Abstract: The objective of this paper is to test for intra-daily seasonality using Maximum Entropy Density
(MED). Specifically, this paper attempts to investigate seasonal patterns over weekdays and through the hours
of a given trading day. The MED estimation is essentially a data driven technique which produces a density
function. A comparison of MEDs across different time segments of the data allows one to test for the existence
of intra-daily seasonality. More importantly with regard to comparisons, an MED presents a richer source of
information compared to a singular metric such as the mean or variance. In other words, such a comparison
enables one to measure different facets of a distribution. In particular, different moments of the distribution.
Repeated patterns in one or more moments between time segments over a period implies the presence of
intra-daily seasonality.

MED estimation techniques assume that a random variable is independent and identically distributed (iid). This
condition ensures that consistent estimators are produced. However, return data has a correlation structure and
as such the observations are not iid. It is proposed that this correlation structure be filtered out prior to the
construction of the MED using an ARMA(1,1) - GARCH(1,1) model.

The overall methodology of this paper is as follows. A data series consisting of returns is segmented into
weekdays. For example, all the Mondays are extracted from the data. Each Monday segment is referred to as
a block. Note that there is a time discontinuity between two consecutive Monday blocks. This has important
implications with regard to filtering the correlation structure. An ARMA(1,1) - GARCH(1,1) model is only
implemented at the block level since time is continuous within the block. The residuals are standardised and
checked for autocorrelation. A MED is computed on the residuals of each block. The first four moment
constraints are used for the MED construction. As such, there are four MED parameters i.e. λi where i
∈ 1, 2, 3, 4. Subsequently, the mean values for each λi are computed over all blocks corresponding to a given
weekday. These values represent the final MED parameters for a given weekday. For example, the λi values
are averaged over all Monday blocks to get the overall MED parameters for the Monday segment. Testing for
intra-daily seasonality is done in two parts. Firstly in order to verify the structure of the resulting MED, tests
are conducted to assess if the resulting mean values are significantly different from zero. Secondly in order
to check for intra-daily seasonality, tests are conducted to assess if the resulting mean values are significantly
different across the weekdays. Significant differences in the mean values of λi across weekdays indicates that
the distribution of returns changes during the week. This pattern over a period of time corresponds to intra-
daily seasonality. This process repeated to check for intra-daily seasonality across different time intervals over
a trading day.

The results indicate that one of the mean values of the MED parameters for Wednesday is significantly different
from the rest of the weekdays. Similarly, one of the mean values of the MED parameters is significant for the
12p.m.- 2p.m. interval.
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1 INTRODUCTION

Investors take advantage of seasonal patterns in return data. Traditionally, analysts have searched for these
patterns over longer time horizons such as quarterly, bi-annually or yearly time periods. However, there are
cases where seasonality exists over a much smaller time horizon such as daily or even hourly time periods.
This has been made possible due to the availability of ultra-high frequency data. This type of seasonality is
more commonly referred to as intra-daily seasonality. Examples of intra-daily seasonality include the weekday
effect, time of the day effect and weekend effect.

French (1980) and Gibbons and Hess (1981) showed that the average daily return for Monday was negative
compared to the positive returns for the rest of the weekdays. Rogalski (1984) investigated the behaviour of
returns over trading and non-trading periods. Smirlock and Starks (1986) conducted a similar study replacing
daily data with hourly data. More recently, Doyle and Chen (2009) introduced the wandering weekday effect
which states that the weekday effect is not fixed, but changes over time.

The objective of this paper is to test for intra-daily seasonality using Maximum Entropy Density (MED).
Specifically, this paper attempts to investigate seasonal patterns over weekdays and through the hours of a
given trading day. The MED derivation produces a density function. A comparison of MEDs across different
time segments of the data allows one to test for the existence of intra-daily seasonality.

Shannon (1948) proposed the idea of entropy as a measure of the amount of uncertainty or randomness. Fol-
lowing that Jaynes (1957) proposed the principle of maximum entropy. This allowed one to maximize Shan-
non’s entropy subject to certain moment conditions. This was presented as a non-linear optimization problem.
The solution to this problem became known as the maximum entropy density. Zellner and Highfield (1988)
focused on the computational aspects of this problem and provided some practical examples. Rockinger and
Jondeau (2002) used the entropy principle to develop a method to model time varying conditional moments.
Chan (2009) proposed a similar method which was more computationally efficient and modelled the structure
of the moments in terms of the MED parameters.

Section 2 provides some brief details about the MED and its advantages. This section also outlines the practical
considerations of implementing this technique. Section 3.1 shows the properties of the data used in this study.
Sections 3.2 and 3.3 provide evidence whether or not intra-daily seasonality exists over different time segments
of the data. Finally, section 4 summarizes the major findings of this study along with its limitations.

2 METHODOLOGY

The continuous version of the entropy presented in Shannon (1948) and Jaynes (1957) is defined as

E = −
∫
A

p(x) log p(x) dx (1)

where p(x) is a probability density function and A represents the set in which the integration occurs. The
principle of Maximal Entropy involves maximizing E subject to various moment conditions. The moment
conditions are as follows:∫

A

p(x) dx = 1 (2)∫
A

xi p(x) dx = mi where i = 1, 2, ..., k. (3)

In the above equations, mi represents the ith raw moment of the distribution. Solving this non-linear opti-
mization problem yields the following solution:

p(x) = Q−1exp

(
k∑

i=1

λix
i

)
(4)

whereQ−1 =
∫
A

exp
(∑k

i=1 λix
i
)

dx. This quantity denotes the normalizing constant which ensures that the
first condition (equation (2)) is satisfied. The λi values represent parameters of the MED. These are essentially
functions of the moments (see Chan (2009)). Using equation (2) as the only moment condition produces the
uniform distribution. This is expected since no other information is used in constructing the density function.
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As such, the resulting distribution allocates equal probabilities to each outcome. As additional information is
added i.e. adding more moment conditions moves the resulting distribution away from the uniform distribution.
Furthermore, varying the structure of the moment conditions such as using log moment conditions or absolute
value of moments etc. produces different classes of distributions. For further details on this topic refer to Park
and Bera (2009).

From the above derivation, one can see that the resulting density is the generalized exponential distribution
(equation (4)). The MED estimation is essentially a data driven technique which estimates the parameters (λi)
of this distribution function. More importantly with regard to comparisons, an MED presents a richer source
of information compared to a singular metric. In other words, such a comparison enables one to measure
different facets of a distribution. In particular, different moments of the distribution. Repeated patterns in one
or more moments between time segments over a period implies the presence of intra-daily seasonality.

Straight forward computation of the MED for return data is problematic since MED estimation techniques
assume that a random variable is independent and identically distributed (iid). This condition ensures that con-
sistent estimators are produced. However, return data has a correlation structure and as such the observations
are not iid. It is proposed that this correlation structure be filtered out prior to the construction of the MED.
Consider the following model:

φr(L)rt = µ+ θs(L)εt (5)

εt = ηt
√
ht ηt ∼ iid(0, 1) (6)

ht = ω +

p∑
i=1

αiε
2
t−i +

q∑
i=1

βiht−i. (7)

Equation (5) represents the Autoregressive Moving Average (ARMA) model where r and s denote the order
of autoregressive and moving average parts of the model respectively. It attempts to capture the dynamics
of the mean of the return data rt. In equation (5), µ represents the drift term and φr(L) = 1 − φ1(L) −
φ2(L)− ...−φr(L) is the autoregressive operator where L is the lag operator such that Lyt = yt−1. Similarly,
θs(L) = 1+θ1(L)+θ2(L)+ ...+θs(L) represents the moving average operator. Both these polynomials have
their unit roots outside the unit circle and share no common roots. This model assumes that the conditional
variance of residuals is constant over time. However, estimating the ARMA model for the return data shows
that the residuals are not constant over time. Furthermore, the ARCH test results are significant for the first
and second lags. This suggests evidence of GARCH effects. Therefore, the variance of the process is modelled
using a GARCH(p, q) model (equation (7)) where p and q represent the order of the autoregressive and moving
average parts of the model respectively. Bollerslev (1986) introduced the GARCH model whilst extending
the work of Engle (1982) on ARCH models. This allows one to model a time varying conditional variance.
An ARMA(1,1) - GARCH(1,1) model is used to filter out the time dynamics of the return data. Higher orders
did not result in an improved fit. The residuals of this model are standardised and checked to ensure that that
no autocorrelation is present in the first and second moment. Subsequently, the MED is estimated from these
residuals.

MED estimation assumes the existence of higher moments in p(x). In practise, sample moments are estimated
and used in place of population moments. These estimates are derived from finite data and as a consequence
always provide finite moments. Whilst a large sample maybe helpful in alleviating some of this concern, this
does not guarantee the existence of higher moments. Berkes(2003) suggests a method of determining the
highest finite moment for given set of data. This method basically relies on estimating the tail index and thus
enables one to justify the use of higher moment conditions in the MED estimation.

The overall methodology of this paper is as follows. A data series consisting of returns is segmented into
weekdays. For example, all the Mondays are extracted from the data. Each Monday segment is referred to as
a block. Note that there is a time discontinuity between two consecutive Monday blocks. This has important
implications with regard to filtering the correlation structure. An ARMA(1,1) - GARCH(1,1) model is only
implemented at the block level since time is continuous within the block. The residuals are standardised and
checked to ensure that no autocorrelation exists. A MED is computed using the standardised residuals of each
block. The first four moment constraints are used for the MED construction. As such, there are four MED
parameters i.e. λi where i ∈ 1, 2, 3, 4. Subsequently, the mean values for each λi are computed over all blocks
corresponding to a given weekday. These values represent the final MED parameters for a given weekday.
For example, the λi values are averaged over all Monday blocks to get the overall MED parameters for the
Monday segment. Testing for intra-daily seasonality is done in two parts. Firstly in order to verify the structure
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of the resulting MED, tests are conducted to assess if the resulting mean values are significantly different from
zero. Secondly in order to check for intra-daily seasonality, tests are conducted to assess if the resulting mean
values are significantly different across the weekdays. Significant differences in the mean values of λi across
weekdays indicates that the distribution of returns changes during the week. This pattern over a period of
time corresponds to intra-daily seasonality. This process repeated to check for intra-daily seasonality across
different time intervals over a trading day.

3 EMPIRICAL RESULTS

3.1 DATA

The data used in this study consists the exchange rate between the US and Australian dollar. This data is
sourced from the SIRCA database. The data series is captured at a one minute frequency from the 30th of May
2008 to the 1st of February 2012. The returns are calculated using the bid price. Figure 1 illustrates a sample
of the return data.

Figure 1. Sample: US/AUD FX Return Data

Observations that occur in non-trading hours1 are excluded from the data set. The data is segmented into
weekdays. Each weekday consists of 192 blocks, each containing 360 observations. Table 1 shows the
summary statistics of the weekday returns over all the blocks.

Table 1. Weekday summary statistics
Weekday Minimum Q1 Median Mean Q3 Maximum
Monday -0.9664 -0.0196 0.0000 0.0002 0.0196 0.6122
Tuesday -0.6609 -0.0204 0.0000 0.0002 0.0209 1.1370
Wednesday -0.8187 -0.0209 0.0000 0.0000 0.0208 2.5496
Thursday -13.9569 -0.2109 0.0000 -0.0004 0.0207 0.7478
Friday -0.6654 -0.0204 0.0000 0.0002 0.0206 0.8563

In order to test for intra-daily seasonality within a trading day, three time intervals are introduced. These are
10a.m. to 12p.m., 12p.m. to 2p.m. and 2p.m. to 4p.m. Similar to the weekday segmentation, each time
intervals consists of 959 blocks, each containing 120 observations.

As mentioned in Section 2, an ARMA(1,1) - GARCH(1,1) model is implemented on each block (weekday and
time interval). The residuals of each block are standardised and checked for autocorrelation. The moments
1Trading hours are assumed to be 10a.m. to 4p.m. weekdays
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of these residuals are computed as part of MED estimation. Table 2 provides the summary statistics for
the skewness and kurtosis of the standardised residuals for the weekdays over all blocks. In the subsequent
sections, the MED parameters derived from these statistics are shown.

Table 2. Weekday moment data
Weekday Moment Min Q1 Median Mean Q3 Max
Monday Skewness -3.1519 -0.1187 0.0307 0.0123 0.1939 2.1901

Kurtosis 2.8961 3.6611 4.2172 5.1861 5.1082 49.945
Tuesday Skewness -1.9224 -0.1648 0.0116 0.0073 0.1668 3.3627

Kurtosis 3.0591 3.6942 4.2753 5.7201 5.3201 42.9433
Wednesday Skewness -1.5613 -0.1234 0.0242 0.0933 0.2298 4.2119

Kurtosis 3.0731 3.8502 4.2851 5.9034 5.2064 59.4311
Thursday Skewness -23.1089 -0.2194 0.0099 -0.1222 0.1968 2.5607

Kurtosis 2.8301 3.9681 4.6131 8.6342 6.1283 536.011
Friday Skewness -5.3876 -0.2045 0.0221 0.0306 0.2062 5.9749

Kurtosis 2.7491 4.1522 5.0972 8.3374 7.6032 84.3871

3.2 WEEKDAY EFFECT

As mentioned in the section 2, the first test is to assess whether or not the final MED parameters for a given
weekday are significantly different from zero. Equation (8) states the hypothesis of the test where λ̄i,w repre-
sents the mean value of the λi over all blocks corresponding to a given weekday w.

H0 : λ̄i,w = 0 (8)
H1 : λ̄i,w 6= 0

The test statistic for this hypothesis test is

t =
¯̀
i,w − 0

s`i,w/
√
ni,w

(9)

where ¯̀
i,w is the sample estimate of λ̄i,w. The standard deviation of `i over all blocks corresponding to a given

weekday w is given by s`i,w and ni,w denotes the number of blocks corresponding to `i for a given weekday
w. This test statistic follows a Student’s t-distribution if the null hypothesis is supported. The results of this
test are shown in table 3 below. This table shows the actual values of the final MED parameters along with
their corresponding t test statistic (in brackets).

Table 3. MED parameters for weekdays
Monday Tuesday Wednesday Thursday Friday

¯̀
1 0.0058 (0.7712) 0.0112 (1.5200) -0.0081 (-1.1837) 0.0205 (2.4501) -0.0027 (-0.3595)
¯̀
2 -0.7927 (-69.2149) -0.7895 (-65.1616) -0.8117 (-69.5279) -0.8162 (-26.8868) -0.7997 (-59.6185)
¯̀
3 0.0011 (0.2502) -0.0046 (-1.1495) 0.0053 (1.5008) -0.0046 (-1.0745) 0.0026 (0.6091)
¯̀
4 0.0000 (0.2237) 0.0001 (0.6389) 0.0007 (4.8581) -0.0001 (-0.1813) 0.0000 (0.3128)

The results indicate that the λ̄2 values are significant for all weekdays. Additionally, the value of λ̄4 is signif-
icant for Wednesday. These results show the structure of the resulting MED. As a consequence, differences
in these structure translate to differences in the cyclical behaviour of returns across the weekdays. A second
test is conducted to assess whether or not the λ̄i values differ across the weekdays. Equation (10) states the
hypothesis of this test.

H0 : λ̄i,w = λ̄i,w∗ where w 6= w∗ (10)
H1 : λ̄i,w 6= λ̄i,w∗
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To test whether the means are different, the t-test statistic is

t =
¯̀
i,w − ¯̀

i,w∗√
s`i,w
ni,w

+
s`i,w∗

ni,w∗

. (11)

This test assumes that the population variances are not equal. The results of this test indicate that the values
of λ̄2 values are not significantly different across all the weekdays. Secondly, λ̄4 value for the Wednesday
is significantly different from the other weekdays. This result is as expected, since the MED pertaining to
Wednesday has a different structure compared to the rest of the weekdays.

3.3 TIME OF THE DAY EFFECT

Similar tests are carried out for the three time intervals over a trading day. The first test is to assess whether or
not the final MED parameters for the three time intervals are significantly different from zero. Equation (12)
states the hypothesis of the test where λ̄i,t represents the mean value of the λi over all blocks corresponding
to a given time interval t.

H0 : λ̄i,t = 0 (12)
H1 : λ̄i,t 6= 0

The corresponding test statistic for this hypothesis test is of the same form as equation (9). The results of this
test are shown in table 4 below. This table shows the actual values of the final MED parameters along with
their corresponding t test statistic (in brackets).

Table 4. MED parameters for time intervals
10p.m. to 12p.m. 12p.m. to 2p.m. 2p.m. to 4p.m.

¯̀
1 0.0051 (1.2105) 0.0047 (0.9949) -0.0049 (-1.0951)
¯̀
2 -0.8131 (-176.2982) -0.8067 (-155.4148) -0.8163 (-172.8275)
¯̀
3 -0.0010 (-0.4546) -0.0008 (-0.3169) 0.0027 (1.1892)
¯̀
4 -0.0001 (-1.1783) -0.0004 (-2.6468) -0.0001 (-0.9468)

The results indicate that the λ̄2 values are significant for all time intervals. Additionally, λ̄4 value is significant
for 12p.m. to 2p.m. time interval. These results show the structure of the resulting MEDs. As a consequence,
differences in these structure translate to a differences in the behaviour of returns across the time intervals. A
second test is conducted to assess whether or not the λ̄i values differ across the time intervals. Equation (13)
states the hypothesis of this test.

H0 : λ̄i,t = λ̄i,t∗ where t 6= t∗. (13)
H1 : λ̄i,t 6= λ̄i,t∗

The corresponding test statistic for this hypothesis test is of the same form as equation (11). The results of this
test indicate that the values of λ̄2 values are not significantly different across all the time intervals. Although
λ̄4 is significant for the t = 12p.m. to 2 p.m. time slot, it is not significantly different when compared to other
intervals.

4 CONCLUSION

This paper has introduced a method for testing intra-daily seasonality using a MED. This methodology is
purely data driven and does not rely on any distributional assumptions. The resulting density allows for a more
richer comparison across different time segments (weekdays or time intervals). Specifically, one is able to
check for differences in higher moments. This is especially important when differences in lower moments are
not significant. This is precisely the result found in this paper. It shows that the λ̄4 value for Wednesday is
significantly different from the rest of the weekdays. But the remaining λ̄ values are not significantly different
across the weekdays. Similarly, the λ̄4 value is significant for the 12p.m. to 2p.m. interval. Lastly, the results
are limited to properties of the data used in this study.
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