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Abstract: Investment in new or improved technology is among the most important decisions that companies
make, because of the initial cost associated with technology adoption and the impact on company’s perfor-
mance over many years. Company’s decision about adoption of new technologies is a trade-off between the
cost of making a mistake by adopting too soon and the opportunity cost of waiting for arrival of even better
technology. The uncertainty in the speed of new technology arrivals and the extent of technological improve-
ments influences the adoption decision.

This paper continues the line of research that considers the innovation process as a stochastic process with
the improvements in new technology described by the Poisson jump process. The focus of early research
was on innovation process characterised by a single stochastic variable (namely, the technological efficiency
parameter) describing the extent of technology improvements. A critical (threshold) value of the efficiency
that triggers technology adoption was established for such a case.

This paper studies the situation common in the minerals processing industry, where not only the efficiency of
new technology under development, but also its operating costs may change in a random fashion. This paper
extends previous research to the following situations: (1) the efficiency of new technology remains unchanged,
while the operating costs decrease randomly, following the Poisson jump process; (2) both the efficiency and
the operating costs of new technology change in a random fashion. This case studies two possibilities: (a)
the operating cost is a function of the efficiency, and (b) both the efficiency and the operating costs of new
technology follow the Poisson jump process with independent jump sizes but the same arrival times.

This paper establishes, for the first time, a threshold curve that separates the plane of feasible values of the
efficiency and the operating costs of new technologies into two regions: (1) a waiting region, where new
technology adoption is still not optimal and (2) an adoption region. The threshold curve represents a deci-
sion boundary that can assist companies in making optimal strategic decisions under uncertainty. Numerical
illustrations of the behaviour of the threshold curve with change in model parameters describing the market
conditions and the characteristics of the stochastic innovation process are provided. The results show that the
adoption decision is significantly affected by the market price of the product (commodity), and the extent of
technological improvements the company expects to occur over time.
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1 INTRODUCTION

Investment in new or improved technology is among the most important decisions that companies make,
because of the initial cost associated with technology adoption and the impact on company’s performance over
many years. Empirical observations show that a substantial time lag typically exists between the arrival of new
technology and its adoption (Doraszelski (2004)). Company’s decision about adoption of new technologies is
a trade-off between the cost of making a mistake by adopting too soon and the opportunity cost of waiting for
arrival of even better technology. The uncertainty in the speed of new technology arrivals and the extent of
technological improvements influences company’s decision about new technology adoption.

A significant amount of literature is devoted to optimal technology adoption. The research on the topic can
be broadly divided into two classes: (1) decision theoretic models and (2) game theoretic model. In the first
class, the profit of the company is only influenced by its own technology adoption decision (see, e.g., Farzin
et al. (1998), Gryglewicz et al. (2008), Doraszelski (2004)), while in the second class, the profit is influenced
by the competition in the market (see, e.g., Huisman and Kort (2003) and the references therein). This paper
follows the decision theoretic approach.

This paper continues the study by Farzin et al. (1998) and Huisman (2001) that considers the innovation pro-
cess as a stochastic process with the technology improvement described by the Poisson jump process. The
focus of early research (Farzin et al. (1998), Huisman (2001)) has been on the innovation process charac-
terised by a single stochastic variable (namely, the technological efficiency parameter), describing the extent
of technology improvements. A critical (threshold) value for the efficiency of new technology that triggers
optimal technology adoption has been established for such a case.

We study the situation common in the minerals processing industry, where new processing technologies may
differ from existing technologies in both the efficiency and the operating costs (see, e.g., Robinson and Tread-
gold (2013), Bao et al. (2013)) . This paper extends previous research by Farzin et al. (1998) and Huisman
(2001) to such situations, assuming that both the efficiency and the operating costs of new technology under
development vary in a random fashion. We study the following situations: (1) the efficiency of new technology
remains unchanged, but the operating costs decrease randomly, following the Poisson jump process; (2) both
the efficiency and the operating costs of new technology change in random fashion. This case studies two pos-
sibilities: (a) the operating cost is a function of efficiency, and (b) both the efficiency and the operating costs
of new technology follow the Poisson jump diffusion process with independent jump sizes but the same arrival
times. The critical (threshold) values of the efficiency and the operating costs that trigger optimal technology
adoption are established for these cases.

This paper establishes for the first time (to the best of the authors knowledge) a threshold curve that represents
a locus of critical values for the efficiency and the operating cost of new technology. The threshold curve
separates the plane of feasible values of the efficiency and the operating cost into two regions: (1) a waiting
region, where new technology adoption is still not optimal and (2) an adoption region, where new technology
adoption occurs. The threshold curve represents a decision boundary for optimal adoption of new technology
under uncertainty. Numerical illustrations of the threshold curve and its behaviour with change in the model
parameters are presented.

2 MODEL

We consider a risk-neutral company whose profit is only determined by its own technology choice. The
technology used by the company is characterised by two parameters: the technological efficiency parameter
ζ > 0 and the unit operating cost ω > 0. We study a dynamic model with infinite time horizon.

Company’s production function is given by (see Farzin et al. (1998) and Huisman (2001))

h(v, ζ) = ζvα, (1)

where v(≥ 0) is a variable input, α ∈ (0, 1) is the constant output elasticity. The profit flow is given by

π(ζ, ω) = max
v

(pζvα − ωv), (2)

where p(> 0) is the unit output price. The profit flow (2) can be re-written as

π(ζ, ω) = C1ζ
1/(1−α)ω(1−α)/α, (3)
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where C1 = (1 − α)[ααp]1/(1−α). If the company produces with the technology (ζ, ω) forever, its value is
given by

V (ζ, ω) =

∫ ∞
t=0

π(ζ, ω)e−rtdt = π(ζ, ω)/r. (4)

We now assume that at the beginning of the planning horizon, the company produces with a technology
whose efficiency equals ζ0 and whose operations cost equals ω0. As time passes, new technologies that are
characterised by new values of efficiency and operating costs appear (we assume that the company cannot
influence the innovation process). We denote the efficiency of new technology by θ and the operating costs
of new technology by η. We assume that the focus of the technological development is to either improve
the efficiency, or to decrease the operating costs. When the efficiency of new technology is improved, the
associated operating cost may be either higher or lower. It is also plausible that new technology would have
decreased operating costs, but unaltered efficiency. Such cases will be studied in the following Section.

Other simplifying assumptions follow previous study by Farzin et al. (1998) and Huisman (2001). Thus, we
assume that the company can adopt new technology only once by paying a sunk cost I .

3 THRESHOLD SWITCHING LEVELS

In this section we study several cases of the technological process development:

• The operating costs of new technologies follow a Poisson jump process, while the efficiency of new
technologies remains unchanged;

• The efficiency of new technology follows a Poisson jump process, while the operating costs change as a
function of efficiency.

• Both the efficiency and the operating costs follow a simultaneous synchronised changes according to
the Poisson jump process.

3.1 Stochastic jump in the operating costs of new technologies

We assume that the efficiency of new technology remains unchanged, while the operating costs undergo ran-
dom changes. For new technology to have a chance to be adopted, the operating cost should reduce. We
therefore assume that the operating cost follows the Poisson process in the form:

dη =

{
v with probability λdt
0 with probability (1− λdt) (5)

where v is a random variable uniformly distributed on the interval [−v̄, 0].

The profit flow function (3) for this case takes the form

π(η) = C2(η)(1−α)/α, (6)

where C2 = (1− α)[ααp]1/(1−α)ζ1/(1−α).

We now make the following assumption.

Assumption 1. ∃ η∗ such that if η ≤ η∗ then it is optimal to adopt new technology, i.e., for ∀ η ≤ η∗, and for
∀ ω ≥ 0, the value of the company F (η, w) is given by

F (η, w) = V (η)− I, (7)

where

V (η) =

∫ ∞
t=0

π(η)e−rtdt =
π(η)

r
. (8)

Given (η, ω) = (η0, ω0), the Bellman equation can be written in the form

F (η0, ω0) =

∫ ∆t

0

π(ω0)e−rtdt+ e−rtE[F (η(∆t), ω(∆t))] (9)

= π(ω0)∆t+ (1− r∆t)E[F (η(∆t), ω(∆t))] + o(∆t),
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We now divide the interval [−v̄, 0] into two intervals: (1) {v : η+v ≤ η∗} and (2) {v : η+v > η∗}. Switching
to new technology occurs in the first region and does not occur in the second region. Then the expectation
E[F (η(∆t), ω(∆t))] can be written as

E[F (η(∆t), ω(∆t))] = (1− λ∆t)F (η0, ω0) +
λ∆t

v̄

[∫ 0

η∗−η0
F (η0 + v, ω0)dv (10)

+

∫ η∗−η0

−v̄
F (η0 + v, ω0 + v)dv

]
.

Substituting (10) into (9) yields, at the threshold (η0 = η∗),

F (η∗, ω0) =
π(ω0)

r + λ
+

λ

(r + λ)v̄

∫ 0

−v̄
(V (η∗ + v)− I)dv (11)

Using the continuity condition for the value function F between the region just prior to technology adoption
and after the adoption, and also substituting V (·) from (8) into (11) and integrating yields

π(ω0)

r + λ
+ I

r

r + λ
+

C2λα

(r + λ)v̄r
[(η∗)(1/α − (η∗ − v̄)1/α] = C2

(η∗)(1−α)/α

r
. (12)

Expression (12) represents a nonlinear equation in η∗ that establishes the critical (threshold) value of the
operating cost that triggers the technology adoption.

3.2 Stochastic jumps in the efficiency and operating costs

Operating cost is a function of efficiency. In this section we assume that new technology has a jump-
improvement in the efficiency accompanied by the change in the unit operating cost. We denote by ζ0 and ω0

the efficiency and the operating costs of the existing technology used by the company. The efficiency and the
operating costs of new technology under development are θ0 and η0. The unit operating cost of new technology
is assumed to be a function of efficiency of the form

η(θ) = η0(1 + β(θ − θ0))γ , (13)

where β > 0 and γ > 0 are the constant parameters. We assume that the efficiency of new technology follows
the Poisson jump process

dθ =

{
u with probability λdt,
0 with probability (1− λdt) , (14)

where u is a random variable uniformly distributed on the interval [0, ū].

The profit flow of new technology in this case is given by

π(θ) = C3θ
1/(1−α)[(1 + β(θ − θ0))γ ](1−α)/α, (15)

where C3 = (1− α)[(α/η0)αp]1/(1−α).

While the efficiency of the new technology increases with each new technology arrival, the operating costs
may either decrease or increase, depending on the parameters β and γ in (13). Clearly, it can only be optimal
to switch to new technology if the profit function is an increasing function in θ.

Assumption 2. π(θ) is an increasing function of θ.

Assumption 3. ∃ θ∗ such that if θ ≥ θ∗ then it is optimal to adopt new technology, i.e., for ∀ θ ≥ θ∗, and for
∀ ζ ≥ 0, the value of the company F (θ, ζ) is given by

F (θ, ζ) = V (θ)− I, (16)

where

V (θ) =

∫ ∞
t=0

π(θ)e−rtdt =
π(θ)

r
. (17)
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Given (θ, ζ) = (θ0, ζ0), the Bellman equation can be written in the form

F (θ0, ζ0) =

∫ ∆t

0

π(ζ0)e−rtdt+ e−rtE[F (θ(∆t), ζ(∆t))] (18)

= π(ζ0)∆t+ (1− r∆t)E[F (θ(∆t), ζ(∆t))] + o(∆t).

We now divide the interval [0, ū] into two intervals: : (1) {u : θ0 + u ≥ θ∗} and (2) {u : θ0 + u < θ∗}.
Switching to new technology occurs in the first region and does not occur in the second region. Then, the
expectation E[F (θ(∆t), ζ(∆t))] can be written as

E[F (θ(∆t), ζ(∆t))] = (1− λ∆t)F (θ0, ζ0) +
λ∆t

ū

[∫ θ∗−θ0

0

F (θ0 + u, ζ0)du (19)

+

∫ ū

θ∗−θ0
F (θ0 + u, ζ0 + u)du

]
.

Substituting (19) into (18) yields, at the threshold (θ0 = θ∗),

F (θ∗, ζ0) =
π(ζ0)

r + λ
+

λ

(r + λ)ū

∫ ū

0

(V (θ∗ + u)− I)du (20)

Using the matching (continuity) condition for the value function F between the region just prior to the adoption
and after the adoption of new technology and rearranging gives the following nonlinear integral equation
equation in θ∗ that establishes the threshold value of the technology efficiency that triggers new technology
adoption:

π(ζ0)

r + λ
+ I

r

r + λ
+

λ

r(r + λ)ū

∫ ū

0

π(θ∗ + u)du =
π(θ∗)

r
. (21)

Independent synchronized jumps in the efficiency and the operating cost. We now assume that both the
efficiency of new technology θ and its operating cost η follow Poisson processes (5) and (14) with common
arrival times Ti.

Assumption 4. ∃ θ∗ and η∗ such that if θ ≥ θ∗ and η ≤ η∗ then it is optimal to adopt new technology, that is,
for ∀ θ ≥ θ∗, η ≤ η∗, and for ∀ ζ, ω ≥ 0,

F (θ, η, ζ, ω) = V (θ, η)− I, (22)

where

V (θ, η) =

∫ ∞
t=0

π(θ, η)e−rtdt =
π(θ, η)

r
. (23)

where π(θ, η) is given by (3).

Given (θ, η, ζ, ω) = (θ0, η0, ζ0, ω0), the Bellman equation can be written in the form

F (θ0, η0, ζ0, ω0) =

∫ ∆t

0

π(ζ0, ω0)ertdt+ e−rtE[F (θ(∆t), η(∆t), ζ(∆t), ω(∆t))] (24)

= π(ζ0, ω0)∆t+ (1− r∆t)E[F (θ(∆t), η(∆t), ζ(∆t), ω(∆t))] + o(∆t).

We now divide the rectangular region [0, ū]× [−v̄, 0] into four regions: (1) {u, v : θ0 +u ≥ θ∗, η0 + v ≤ η∗};
(2) {u, v : θ0 + u ≥ θ∗, η0 + v > η∗}; (3) {u, v : θ0 + u < θ∗, η0 + v ≤ η∗} and (4) {u, v : θ0 + u <
θ∗, η0 + v > ω∗}. Switching to new technology occurs in the first region, and does not occur in the second,
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Figure 1. Threshold curve; (a) threshold curve separates the waiting region where adoption of new technology
is still not optimal, from the adoption region where new technology adoption occurs. A dot in a square
shows the initial values of the operating costs and the efficiency of the technology in use; (b) Effect of the
product/commodity price p on the threshold curve behaviour, 1: p = 10, 2: p = 15, 3: p = 100; (c) Effect
of the expected maximum size of efficiency improvement ū on the threshold curve behaviour, 1: ū = 0.25, 2:
ū = 0.2, 3: ū = 0.16.

third and fourth regions. The expectation E[F (θ(∆t), η(∆t), ζ(∆t), ω(∆t))] in (24) can be written as

E[F (θ(∆t), η(∆t), ζ(∆t), ω(∆t))] = (1− λ∆t)F (θ0, η0, ζ0, ω0)

+
λ∆t

ūv̄

{∫ ū

θ∗−θ0

∫ η∗−η0

−v̄
F (θ0 + u, η0 + v, ζ0 + u, ω0 + v)dudv

+

∫ θ∗−θ0

0

∫ η∗−η0

−v̄
F (θ0 + u, η0 + v, ζ0, w0)dudv (25)

+

∫ ū

θ∗−θ0

∫ 0

η∗−η0
F (θ0 + u, η0 + v, ζ0, w0)dudv +

∫ θ∗−θ0

0

∫ 0

η∗−η0
F (θ0 + u, η0 + v, ζ0, w0)dudv

}

At the threshold, (θ0 = θ∗, η0 = η∗), (25) takes the form

E[F (θ(∆t), η(∆t), ζ(∆t), ω(∆t))] = (1− λ∆t)F (θ∗, η∗, ζ0, ω0)

+
λ∆t

ūv̄

∫ ū

0

∫ 0

−v̄
(V (θ∗ + u, η∗ + v)− I)dudv. (26)

Substituting (26) into (24) yields, using the matching (continuity) condition for the value function F between
the region just prior to technology adoption and after the adoption, yields

π(ζ0, ω0)

r + λ
+I

r

(r + λ)
+
λ(1− α)(αp)1/(1−α)

(r + λ)rγūv̄
[(θ∗+ū)γ−(θ∗)γ ][(η∗)1/α−(η∗−v̄)1/α] =

π(θ∗, η∗)

r
, (27)

where γ = (2−α)/(1−α). Expression (27) describes the locus of the critical values of the efficiency θ∗ and
the operating costs η∗, which we call a threshold curve, and that triggers new technology adoption once it has
been crossed.

Remark. Note that in the limit v̄ → 0, expression (27) reduces to the expression for the critical efficiency
level by Farzin et al. (1998). In the limit ū → 0, expression (27) reduces to the expression for the critical
operating cost level (12) derived in this paper.

4 NUMERICAL EXAMPLE

In this section, we study the case when both the efficiency of new technology θ and its operating cost η follow
the Poisson process with common arrival times, and compute the threshold curve presented by (27). In this
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example, the following model parameters are used: α = 0.5, s = 200.0, ζ0 = 0.8, ω0 = 30.0, λ = 1.0, ū =
0.2, r = 0.1, I = 1600.0. In addition, we take v̄ = 9.0. Figure 1a shows the threshold curve (θ∗ = θ∗(η∗))
computed from (27) under the conditions η∗ ≤ ω0, θ

∗ ≥ ζ0. The threshold curve separates the plane of
feasible values of the efficiency and the operating costs of new technologies into two regions: (1) a waiting
region, where new technology adoption is still not optimal and (2) an adoption region where adoption of new
technology occurs.

The behaviour of the threshold curve with change in the model parameters is illustrated in Figs.1b and 1c. One
can see from Fig.1b that increase in market price of the product p leads to faster technology adoption. On the
other hand, Fig. 1c shows that increase in the expected maximum size of efficiency improvements ū of new
technology delays the adoption of new technology.

5 DISCUSSION AND FUTURE WORK

This paper establishes the critical (threshold) values and the threshold curve for new technology adoption
for the cases when the innovation process is characterised by two stochastic variables: the efficiency and the
operating cost. The threshold values and the threshold curve depend on the model parameters that reflect
the market conditions, the company’s initial technological attributes and the characteristics of the stochastic
innovation process.

The threshold curve established in this paper represents the boundary between the two decision regions (wait-
ing and adoption) and may be a useful tool for decision making about optimal adoption of new technology
under technological uncertainty. Numerical results show that an increase in the market price of the product
leads to faster technology adoption, while an increase in the expected maximum size of efficiency improve-
ments of new technology delays the adoption of new technology.

The expression for the threshold curve in this paper is derived for the case when the efficiency of new tech-
nology grows randomly, while the operating costs randomly decrease. In practice, it is not uncommon that
an increase in the efficiency of new technology may be accompanied by an increase in the operating costs.
Such case will be a subject of further study. An extension of the results in this paper to the uncertain market
conditions also requires further study.
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