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Abstract: Gold has been considered a safe return investment because of its characteristic to hedge against 
inflation. As a result, the models to forecast gold must reflect its structure and pattern. Gold prices follow a 
natural univariate time series data and one of the methods to forecast gold prices is Box-Jenkins, specifically 
the autoregressive integrated moving average (ARIMA) models. This is due to its statistical properties, 
accurate forecasting over a short period of time, ease of implementation and able to handle nonstationary 
data. Despite the fact that ARIMA is powerful and flexible in forecasting, however it is not able to handle the 
volatility and nonlinearity that are present in the data series. Previous studies showed that generalized 
autoregressive conditional heteroskedatic (GARCH) models are used in time series forecasting to handle 
volatility in the commodity data series including gold prices. Hence, this study investigate the performance of 
hybridization of potential univariate time series specifically ARIMA models with the superior volatility 
model, GARCH incorporates with the formula of Box-Cox transformation in analyzing and forecasting gold 
price. The Box-Cox transformation is used as the data transformation due to its power in normalizing data, 
stabilizing variance and reducing heteroskedasticity.  
 

There is two-phase procedure in the proposed hybrid model of ARIMA and GARCH. In the first phase, the 
best of the ARIMA models is used to model the linear data of time series and the residual of this linear model 
will contain only the nonlinear data. In the second phase, the GARCH is used to model the nonlinear patterns 
of the residuals. This hybrid model which combines an ARIMA model with GARCH error components is 
applied to analyze the univariate series and to predict the values of approximation. In this procedure, the error 
term tε of the ARIMA model is said to follow a GARCH process of orders r and s. 
 

The performance of the proposed hybrid model is analyzed by employing similar 40 daily gold price data 
series used by Asadi et al. (2012), Hadavandi et al. (2010), Khashei et al. (2009) and Khashei et al. (2008). 
From the plotting in-sample series, the gold price series does not vary in a fixed level which indicates that the 
series is nonstationary in both mean and variance, exhibits upward and nonseasonal trends which reflect the 
ARIMA models. The hybridization of ARIMA(1,1,1)-GARCH(0,2) revealed significant result at 1% 
significance level and satisfied the diagnostic checking including the heteroskedasticity test. The plotting of 
forecast and actual data exhibited the trend of forecast prices follows closely the actual data including for the 
simulation part of five days out-sample period. Consequently, the hybrid model of ARIMA(1,1,1)-
GARCH(0,2) for the transformed data is given by 
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Empirical results indicate that the proposed hybrid model ARIMA-GARCH has improved the estimating and 
forecasting accuracy by fivefold compared to the previously selected forecasting method. The findings 
suggest that combination of ARIMA (powerful and flexibility) and GARCH (strength of models in handling 
volatility and risk in the data series) have potential to overcome the linear and data limitation in the ARIMA 
models. Thus, this hybridization of ARIMA-GARCH is a novel and promising approach in gold price 
modeling and forecasting.      
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1. INTRODUCTION 

Gold has been the most popular commodity as a healthy return investment due to its unique properties as a 
safe haven asset. Currency crises, inflation and instability economy in many countries since 1933 such as the 
Great Depression (1933), Asean crisis (1997-98) and global economic crisis (2008-2010) showed that gold 
being used as a hedge against inflation. According to Shafiee and Topal (2010), there is a significant negative 
relationship between inflation and the gold price over the last 40 years. Besides that, gold still an excellent 
store of value compared to other financial assets and commodities. By looking at the historical trend of gold 
price that are fluctuated based on global supply and demand and no risk-free, hence it is necessary to develop 
a model that reflects the pattern of the gold price movement since it become very significant to investors. 
 

Gold prices are naturally time series data. Time series analysis develops a model for data series based on 
historical data and its past error. One of the widely used univariate time series models in many research 
practices is Box-Jenkins modelling. The Box-Jenkins modelling is one of the most powerful forecasting 
techniques available and it can be used to analyze almost any set of data (Christodoulos et al., 2010). In 
economics, Box-Jenkins modeling is well used in exchange rate forecasting, a basis model in gold price 
forecasting, and as a benchmark forecast model for gold and silver returns.  
 

In many practical applications, the autoregressive integrated moving average (ARIMA) model is the most 
widely used Box-Jenkins models since it can handle nonstationary data. According to Shafiee and Topal 
(2010), the gold price followed a random walk and nonstationary characteristics. Therefore, ARIMA has 
been good potential to be a forecasting model for gold prices.  ARIMA is one of the most important time 
series models used in financial market forecasting over the past three decades due to its statistical properties, 
accurate forecasting over a short period of time and ease of implementation (Khashei et al., 2009). 
 

Despite the fact that the ARIMA is powerful and flexible, it is not able to handle the volatility and 
nonlinearity that are present in the data series. Gold as a well-established physical commodity has been 
actively traded spot on international markets since 1967. Since then, the gold market has been volatile. 
Previous studies showed that generalized autoregressive conditional heteroskedatic (GARCH) models are 
used in time series forecasting to handle volatility in the commodity data series including in the gold price 
volatility. 
  

Combining models or hybrid the models can be an effective way to overcome the limitations of each 
components model as well as able to improve forecasting accuracy. In recent years, more hybrid forecasting 
models have been proposed applying Box-Jenkins models including an ARIMA model with GARCH to time 
series data in various fields for their good performance. Wang et al. (2005) proposed an ARMA-GARCH 
error model to capture the ARCH effect present in daily stream flow series. Zou et al. (2006) applied the 
ARIMA-GARCH model in forecasting internet traffic, while Chen et al. (2011) suggested ARIMA-GARCH 
model for short-time traffic flow prediction. In energy price forecasting, Tan et al. (2010) proposed a 
forecasting method that a combination of wavelet transform with ARIMA and GARCH models in predicting 
day-ahead electricity price. Meanwhile, Pham and Yang (2010) proposed the ARMA-GARCH procedures for 
estimating the machine health condition. In 2013, Liu and Shi applying ARMA-GARCH approaches to 
forecasting short-term electricity prices. Meanwhile, Liu et al. (2013) applied ARMA-GARCH-in-mean for 
wind speed forecasting. In the study, they explained the ARIMA-GARCH methodology as it is closed related 
the proposed model.  
 

There are many forecast models used in forecasting gold price. The models which has been used recently are 
Box-Jenkins models (Miswan et al., 2013; Khashei et al., 2008), back propagation neural network (Yuan, 
2012; Zhou et al., 2012; Parisi et al., 2008), system dynamics model (Tharmmaphornphilas et. al, 2012), 
varying-coefficient regression model (Zhang et al., 2011), data mining methods (Mustaffa &Yusof, 2011), 
jump-and-dip diffusion (Shafiee and Topal, 2010), artificial intelligence models, multiple linear regression 
models (Ismail et al., 2009) or can be the hybrid of the above mentioned models (Khashei et al., (2009, 
2008); Hadavandi et al., 2010; Asadi et al., 2012).  
 

Although these models achieve a certain effect in forecasting gold price, there is no study that focuses on the 
performance of hybrid of ARIMA models with GARCH. In practice, the logarithmic function is used in 
transforming data in any financial data series. However in this study, the formula of Box-Cox transformation 
will be applied in the data transformation step. In line with these needs, this research is considered the 
pioneer in proposing a hybridization of the univariate time series modeling with volatility models 
incorporates with Box-Cox transformation in analyzing gold price. In this study, GARCH as the superior 
volatility model is applied to construct a hybrid model to overcome the linear limitations of ARIMA models 
by considering volatility in the forecast model in an attempt to yield more accurate forecast results.  
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2. TIME SERIES FORECASTING MODEL AND METHODOLOGY OF HYBRIDIZATION 
 
2.1 ARIMA Models 
 

The autoregressive integrated moving average model of order p and q, ARIMA(p,d,q) is suggest for the 
nonstationary and nonseasonality data series. Let 

ty  and tε  be the observed value and random error at time 

period t, respectively; with μ  is the mean of the model, pϕϕϕ ,...,, 21  are the autoregressive parameters with 

order p, qθθθ ,...,, 21 are the moving average parameters with order q, and d is the order of differencing. The 

general form for ARIMA(p,d,q) that generates the time series with the mean μ has the form as in Eq. (1), 
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and B is the backward shift operator. 
 

ARIMA is one type of models in the Box-Jenkins modeling. The Box - Jenkins methodology includes four 
iterative steps of model identification, parameter estimation, diagnostic checking and forecasting. In 
identification step, data transformation is required to make the series stationary. The stationary process is a 
necessary condition in building an ARIMA model. When the observed time series presents trends and 
nonseasonal behavior, data transformation and differencing are applied to the data series in order to stabilize 
variance and to remove the trend before an ARIMA model is applied. In the Box-Jenkins modeling, the 
autocorrelation function (ACF) and the partial autocorrelation function (PACF) of the sample data are used in 
identifying the order of the time series model. The chosen model then is statistically checked whether it 
accurately describes the series. The model fits well if the P-value of its parameter is statistically significant, 
as well as its residuals are generally small, randomly distributed, and contain no useful information, where at 
this point, the model can be used for forecasting. 
 
2.2. GARCH Models 
 

For a univariate series, let  
 

ttt ay += μ           (2) 
 

be a mean equation at time t , where tμ is conditional mean of ty  and ta  is the shock at time t  and ttta εσ=  

where ( )1,0 ~ Niidtε . Then ta  follows a GARCH (r,s) model if      
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coefficient of the parameters ARCH and GARCH, respectively. According to Pham & Yang (2010), ACF 
and PACF of the residuals help to specify the GARCH orders, r and s, respectively. 
 
2.3 Hybrid ARIMA-GARCH 
 

There is two-phase procedure in the proposed hybrid model of ARIMA and GARCH. In the first phase, the 
best of the ARIMA models is used to model the linear data of time series and the residual of this linear model 
will contain only the nonlinear data. In the second phase, the GARCH is used to model the nonlinear patterns 
of the residuals. This hybrid model which combines an ARIMA model with GARCH error components is 
applied to analyze the univariate series and to predict the values of approximation series (see Liu et al., 2013; 
Chen at al., 2011; Tan et al., 2010; Zou et al., 2006; Bollerslev and Wooldridge, 1992). In this procedure, the 
error term tε  of the ARIMA model is said to follow a GARCH process of orders r and s. The methodology of 

this hybrid procedure is shown in Figure 1.  
 
 
 
 
 
 
 

1203



Yaziz et al., The performance of hybrid ARIMA-GARCH modeling in forecasting gold price 

 

 

 

 

 

 

 

 

 

                                                                                 

 

 

 
Figure 1. Flowchart of the procedure for hybridization of Box-Jenkins and GARCH models 

 
 

3. DATA TRANSFORMATION METHOD: BOX-COX TRANSFORMATION  
 

According to Osborne (2010), Box-Cox transformation represents a potential best practice whenever 
normalizing data or equalizing variance is desired, which it is envisioned as a panacea for simultaneously 
correcting normality, linearity and reducing homoskedasticity. The formula of the Box-Cox transformation is   
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where ty  is the actual data at the time t, *

ty  is the transformed data at time t, and λ  is the minimum residual 

mean square error value. The transformation in Eq. (4) is valid only for positive series, 0>ty . 

 
 

4. MODELING OF GOLD PRICE 
 

4.1. Data of Study 
 

In this study, a total of 40 daily gold price data series in USD/grams is used from 26th November 2005 to 18th 
January 2006 of 5-day-per-week frequencies. The data are divided into two parts: ( i) in-sample period for the 
first 35 observations;  (ii) out-of-sample for the last five observations. The analysis is made on the same data 
series used by Asadi et al. (2012), Hadavandi et al. (2010), Khashei et al. (2009) and Khashei et al. (2008). 
 
4.2.  Methodology and Analysis 
 

The first step of identification is to check the 
occurrence of a trend as well as seasonality in 
gold price movement by plotting in-sample series 
as shown in Figure 2. From the plotting, it can be 
seen that the gold price series does not vary in a 
fixed level which indicates that the series is 
nonstationary in both mean and variance, as well 
as exhibits an upward and nonseasonal trends.   

 

Figure 2. The in-sample gold price data series
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The observed series need to be transformed since it is nonstationary in variance. Using the rounded value of 

17.0=λ given by Minitab, the Box-Cox transformation of 
17.0

117.0

* −
= t

t

y
y , where

*

ty is the transformed data 

and ty  is the observed data, is applied to the gold price series.  From the plotting of transformed data series, 

it can be seen that the series is less volatile, as the standard deviation of the transformed series decreased 
from 0.277 to 0.040. However, the graph shows that the trend is still exist on the transformed series, which 
indicate that there is non stationarity in the mean. According to the unit root test, the p-value of 0.682 of 
Augmented Dickey-Fuller (ADF) test for the transformed series is strongly disagrees that the series is 
stationary. The correlograms of ACF and PACF of the transformed series that are slowly decaying also 
support the results. Thus, the transformed gold price series need to be differenced in order to remove the 
trend and obtain a stationary series.   
 

The p-value = 0.000 indicates the ADF t-statistic is significant, means the first differenced transformed series 
is stationary. The graph plotting of the first differenced transformed series illustrates the stationarity of the 
first order differenced transformed gold price series since most of the data are located around mean of zero. 
The stationarity of the first differenced series then supported by the correlogram patterns of ACF and PACF 
for the series, where the values are reduced drastically to zero. The Jarque-Bera test indicates that the 
differenced series is normally distributed at 5% significance level. Thus, the first order difference for 
transformed gold prices series is used to find appropriate hybrid models of ARIMA-GARCH approaches. In 
this study, the maximum likelihood estimation (MLE) method is used in the parameter estimation. In the 
estimation stage, the values of Akaike information criterion (AIC) and Schwarz information criterion (SIC) 
are considered. In this context, the model with smaller AIC and SIC values are concluded to be the better 
estimation model.  
 

Based on the correlograms of ACF and PACF for the first differenced transformed series and the residuals 
series, there are 40 possible model combinations between ARIMA and GARCH for 2,1,0=p , 1=d , 

2,1,0=q , 1,0=r  and 2,1,0=s . From the analysis conducted in the estimation stage, two of the ARIMA-

GARCH models show significant results. The results of AIC and SIC for those 2 models are given in Table 
1, show that the hybrid model of ARIMA(1,1,1)-GARCH(0,2) produced the most negative values for both 
AIC and SIC, and significant at all levels of significance. Therefore, only the ARIMA(1,1,1)-GARCH(0,2) is 
considered for the next diagnostic checking or cleaning data stage.     
 
      Table 1. The results of estimation stage of the possible ARIMA models. 
 

Models 01.0=α  05.0=α  1.0=α  AIC SIC 

ARIMA(1,1,1)-GARCH(0,2) sig. sig. sig. -5.194 -4.922 
ARIMA(2,1,2)-GARCH(1,0) not not sig. -5.064 -4.743 

 
 

The diagnostic checking is conducted to check the adequacy of the model considered where the test of Ljung-
Box Q-statistic, heteroscedasticity test and the normality analysis are considered on the residuals of the 
model. The ACF and PACF of the squared standardized residuals for all the considered hybrid models show 
approximately zero, which is consistent with the insignificant Ljung-Box -statistic -value that determine 
the models are adequate. The assumption of normality of the standardized residuals for all models is satisfied 
by the test of Jarque-Bera. Meanwhile, the ARCH-LM test on the residuals of the model indicates that the 
conditional heteroscedasticity is no longer present in the data series.  
 

In the forecasting stage, the series of out-of-sample transformed data consists of five observations are used to 
obtain the forecast results. The prediction error is compared across models on the basis of two evaluation 
criteria commonly used in the previous literatures. The evaluation criteria are the mean absolute error (MAE) 
and mean square error (MSE). The best forecasting model is the one that generates the lowest prediction error 
of MSE and MAE. Let n be the number of forecasts, ty  and tŷ  are the actual and the predicted values of ty  

at time t, respectively.  The evaluation criteria are given in Eq. (5) and Eq. (6).  
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The prediction errors and forecast evaluations for the proposed model with all the considered models from 
previous studies are presented in Table 2.  From the forecasting results, it can be concluded that 
ARIMA(1,1,1)-GARCH(0,2) outperform by five times better compare to the ten selected methods in the 
literatures in forecasting daily gold price. Consequently, the hybrid model of ARIMA(1,1,1)-GARCH(0,2) 
for the transformed data is given by Eq. (7). 
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Table 2. The performance of the proposed model compared to some selected forecasting models 
 

Models MAE MSE 
ARIMA [Khashei et al., 2008] 0.105 0.017 
Chen’s fuzzy time series (first order) [Khashei et al., 2008] 0.297 0.116 
Chen’s fuzzy time series (second order) [Khashei et al., 2008] 0.292 0.111 
Yu’s fuzzy time series [Khashei et al., 2008] 0.297 0.116 
Artificial neural networks (ANNs) [Khashei et al., 2008] 0.170 0.034 
ANFIS [Khashei et al., 2008] 0.081 0.013 
Hybrid of ARIMA, ANN and fuzzy [Khashei et al.,2009] 0.097 0.012 
PSO-based time series [Hadavandi et al., 2010] 0.047 n.a 
OLS method [Hadavandi et al., 2010] 0.098 n.a 
PSOARIMA [Asadi et al., 2012] 0.0439 0.005 
ARIMA-GARCH (proposed model) 0.008 0.0001 
*n.a not available 

 
The following Figure 3 is the forecasting results of ARIMA(1,1,1)-GARCH(0,2) with ±2 standard errors for 
daily gold prices from 26th November 2005 to 18th January 2006. Graphically, the figure shows the 
promising performance of the hybrid model in forecasting daily gold price series which is the trend of 
forecast prices follows closely the actual data including for the simulation part of five days out-sample 
period. The comparison values between actual data of daily gold price and forecast price using the proposed 
model for the five-days out-sample period is given by Table 3.  
 
 

 
 

Figure 3. Graph of the actual data and forecast data using 
ARIMA(1,1,1)-GARCH(0,2) 

 

Table 3. The comparison between actual 
price and forecast price for out-sample 
period 
 

Date Actual 
price 

Forecast 
price 

14 January  10.87 10.88 
15 January  11.06 10.89 
16 January  11.08 11.13 
17 January 11.06 11.06 
18 January  11.06 11.11 

 
 
5.  DISCUSSION AND CONCLUSION 
 

This study examined the performance of hybrid of the most powerful univariate time series, ARIMA models 
with the superior volatility models, GARCH in analyzing and forecasting daily gold price data series. The 
Box-Cox formula is used in the data transformation step to address non stationarity in variance. The 
empirical results of 40-day gold price data series indicate that the hybrid ARIMA(1,1,1)-GARCH(0,2) model 
provide the optimum results and effectively improved estimating and forecasting accuracy compared to the 
ten previous methods of forecasting in literatures. In conclusion, the complete combination of powerful and 
flexibility of ARIMA and the strength of GARCH models in handling volatility and risk in the data series as 
well as to overcome the linear and data limitation (see Khashei et al., 2009) in the ARIMA models made the 
combination of ARIMA-GARCH as a new potential approach in analyzing and forecasting daily gold price.   
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