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Abstract: When methods for forecasting solar radiation time series were first developed, the principal appli-
cations were for estimating performance of rooftop photovoltaic or hot water systems. If there were significant
errors in the forecast, the consequences were not severe. In recent times there has been increasing development
of larger solar installations, both large scale photovoltaic and also concentrated solar thermal. In order to first
influence financial backers to participate in their development, and also to potentially compete in the electric-
ity markets, better forecasting models are required than simple Box-Jenkins models, such as those outlined in
Boland (2008). In Huang et al (2013), we developed a combination model linking a standard autoregressive
approach with a resonating model borrowed from work on dynamical systems, and also an additional compo-
nent that greatly enhances forecasting ability. This model was developed for a solar radiation series at a single
site.

In this article I give an introduction to the tools needed for the multivariate forecasting of solar radiation.
The modelling was developed for three sites in Guadeloupe, approximately 20 km. jointly from each other.
One would expect significant cross correlation between the sites since they are affected by a common climate
influence, Les Alizes, the Trade Winds. Thus, cloud bands inevitably pass over the sites at regular intervals.
I demonstrate the techniques required to pre whiten the data (as far as possible) for a single site. The next
step involved checking the cross correlation of the noise between sites, finding significant correlation between
the sites at time t and also between the values at time t and time t − 1. A subsequent one lag multivariate
time autoregressive model was estimated. It was hoped that the three noise variables resulting from this
modelling would be iid. However, this was not to be the case and all three noise series exhibited conditional
heteroscedasticity. In this case, ARCH models sufficed to describe this behaviour.
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1 INTRODUCTION

We will describe the multivariate forecasting of solar radiation using three sites at Guadeloupe, in the French
West Indies. The goal is to see how much forecasting skill we can attain, when you have data from three
partially correlated sites. For the first analysis, we will concentrate on hourly solar radiation data, with the
time for the sites being coincident. For this reason, we use the eleven months February to December 2011.
We will follow the systematic procedure outlined in (3). When analysing a time series data set, the first step
is to consider whether it contains a trend, or seasonality, or both. Following Boland (1), (2), we construct the
Power Spectrum which gives the power in the series at frequencies 1 to 731 cycles per year. We illustrate
this for the site of Desirade, latitude 16.32o in Figure 1. There are a number of interesting features to this
power spectrum, particularly if you compare it with the power spectrum for a site at latitude -34.22o, Mildura,
Australia, shown in Figure 2. For Mildura, the annual cycle is more pronounced than for Desirade, and also
there are two prominent spikes at 364 cycles/year and 366 cycles/year. As explained in (3), these are called
either beat frequencies or sidebands. They describe the amplitude modulation, the change in the amplitude
of the daily cycle to suit the time of year. Their relative absence for Desirade shows that the amplitude of
the daily cycle does not change significantly during the year. As well as this, the lower power at the annual
cycle shows that there is not as great a difference over the year in the mean daily solar radiation. These two
conclusions are well illustrated by comparing the daily mean radiation over the year for Desirade Figure 3 and
Mildura Figure 4.
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Figure 1. Power spectrum for hourly solar radiation for Desirade 2011 data

2 FOURIER SERIES MODEL

The power spectrum identifies which frequencies are significant contributors to what we will term the sea-
sonality of the data. This seasonality is then well represented by a suitable Fourier series. Even though there
are significant differences between the power spectra for Desirade compared to that of the Australian site of
Mildura, we will still use the same formulation as in (3). Any insignificant frequencies will have a contribution
to the series not far removed from zero. Equation 1 gives the Fourier series:
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Figure 2. Power spectrum for hourly solar radiation for Mildura data
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Figure 3. Daily mean solar radiation for Desirade

Here, α0 is the mean of the data, α1, β1 are coefficients of the yearly cycle, α2, β2 of twice yearly and αnm,
βnm are coefficients of the daily cycle and its harmonics and associated beat frequencies. An inspection of the
Power Spectrum would show that we need to include the harmonics of the daily cycle (n = 1, 2) and also the
beat frequencies (m = -1, 1). Figure 5 shows an illustration of the Fourier series model of the data.

When the Fourier series contribution is subtracted from the data series, the residual series is then modelled
with the coupled autoregressive and dynamical system approach, details of which are given in (3). We now
present illustrative results (with the seasonality added back in) for two separate days, one clear and one with
clouds passing on a number of occasions. See Figures 6 and 7 for these two situations respectively. It should
be noted that the normalised root mean square error for this in sample forecast was 20.8%, as compared to
18.5% for the same type of analysis for the Mildura data as reported in (3). This is a similar error but would
point to a higher incidence of passing clouds. We suggest that in general the climate of Mildura would indicate
that it is in general clearer than even the clearest part of Guadeloupe, that of Desirade.

The following table gives a summary of error measures for the three sites. The error measures are median
absolute percentage error(MeAPE), mean bias error (MBE) and normalised root mean square error (nRMSE).

1477



John Boland, Multivariate Forecasting of Solar Energy

0

20

40

60

80

100

120

140

160

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361

Av
er
ag
e 
(W

h)

Time (Days)

Figure 4. Daily mean solar radiation for Mildura
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Figure 5. Five days solar radiation and corresponding Fourier series representation

There are two things worth mentioning with these measures. We use the median APE instead of the mean APE
since the divisor is at times quite small in this calculation, resulting in an abnormally large error when in fact
the absolute error itself is quite small. Also, some authors are suggesting that for normalising the RMSE, one
should use a clear sky value in the denominator rather than the mean of the data. We shall in this discussion
use the mean, but reserve the right to think again in future as to the preferred approach. It should be noted
that the trend toward using a clear sky value mirrors the approach often taken in error analysis for wind farms,
using the installed capacity rather than mean output as the normalising constant.

Desirade Fouillole Petit-Canal
MeAPE 11.9% 16.6% 12.1%

MBE 2.99 1.55 3.35
nRMSE 20.8% 26.0% 21.4%
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Figure 6. The CARDS model on a clear day
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Figure 7. The CARDS model on a cloudy day

2.1 Multivariate model

The preceding modelling has pre-whitened the three series, in other words, identified, analysed and removed
any structure that depends on the individual series. What is left are three residual time series, Xi, i = 1, 2, 3.
What we are going to do now is to determine if there is any cross correlation between these three series. Here,
we designateX1 as the series corresponding to Desirade,X2 Fouillole, andX3 Petit-Canal. When we perform
a simple correlation at time t, we find that all three pairwise correlations are small but significant. They are

Desirade Fouillole Petit-Canal
Desirade 1 0.177 0.243
Fouillole 0.177 1 0.278

Petit-Canal 0.243 0.278 1
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We next checked the correlations for each site with the other sites at one hour time lag. In each case, all proved
to be significant, although once again positive but not large. They are given in the following tables.

Fouillole Petit-Canal
Desirade 0.126 0.117

Desirade Petit-Canal
Fouillole 0.150 0.130

Fouillole Desirade
Petit-Canal 0.232 0.199

This allows us to write down equations for the Xi, in the following form, similar to the vector autoregressive
(VAR) model.

X1,t = α11 + α12X2,t + α13X3,t + β12X2,t−1 + β13X3,t−1 + Z1,t

X2,t = α22 + α21X1,t + α23X3,t + β21X1,t−1 + β23X3,t−1 + Z2,t

X3,t = α33 + α31X1,t + α32X2,t + β31X1,t−1 + β32X2,t−1 + Z3,t

After performing the regression, this becomes

X1,t = −3.11 + 0.0824X2,t + 0.1830X3,t + 0.0498X2,t−1 + 0.0819X3,t−1 + Z1,t

X2,t = 0.2766X1,t + 0.1398X3,t + 0.1214X1,t−1 + 0.1005X3,t−1 + Z2,t

X3,t = 0.2093X1,t + 0.1798X2,t + 0.2024X1,t−1 + 0.1212X2,t−1 + Z3,t

The expectation is that the Zi will each be independent and identically distributed on an individual basis. If
that is so, then for each series, one will be able to use the principle of ergodicity to estimate the variance
of the forecast for each series at each time t, by calculating the three sample ensemble variances. To check
this condition, we squared each Zi and then looked at the sample autocorrelation and partial autocorrelation
functions (SACF, SPACF). The SACF for each series decayed slowly with a sinusoidal variation due to the
series all being zero at night. An example SPACF representation for Desirade is given in Figure 8.

What this means is that we need to fit an Autoregressive Conditional Heteroscedastic (ARCH) model to the
squared residuals, using them as the best estimator for the variance of the series (4). What this means is that
when forecast the value of the series for time t + 1, when we have the history up to time t, we also need to
forecast the variance at time t + 1 using this ARCH model and knowledge of the squared final residuals up
to time t. We can use this forecasted variance to construct error bounds on the forecasts. After estimating the
parameters for the ARCH models, we have
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Figure 8. SPACF for squared residuals for Desirade

σ2
X1,t

= 0.2259Z2
1,t−1 + 0.1816Z2

1,t−2
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2,t−4

σ2
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3,t−1 + 0.1344Z2

3,t−2 + 0.0569Z2
3,t−3

3 CONCLUSION

This article gives an introduction to the tools needed for the multivariate forecasting of solar radiation. I have
demonstrated the techniques required to pre whiten the data (as far as possible) for a single site. The next
step involved checking the cross correlation of the noise between sites, finding significant correlation between
the sites at time t and also between the values at time t and time t − 1. A subsequent one lag multivariate
time autoregressive model was estimated. It was hoped that the three noise variables resulting from this
modelling would be iid. However, this was not to be the case and all three noise series exhibited conditional
heteroscedasticity. In this case, ARCH models sufficed to describe this behaviour. Two immediate tasks come
to mind. One is to utilise the models for the levels of the three series and the corresponding ARCH models
for the conditional variances to demonstrate the probabilistic forecasting of multivariate solar time series. The
other issue is to check for all these effects for time series of solar radiation for multiple sites in other locations.
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