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Abstract: Unit commitment (UC) and economic dispatch (ED) are two crucial optimisation problems in the
short term operational planning of power systems. For a given scheduling period, UC determines the optimal
set of generating units to be in service whereas ED determines the economic distribution of generation val-
ues for a known set of generators. Both of these problems are modelled as aggregated supply and demand
problems, and require an estimate of the transmission loss. Therefore the accuracy of the approximated trans-
mission loss within these problems is vital in ensuring the optimality and feasibility of the solutions. The
increasing penetration of renewable energy (RE) technologies into the grid has increased the volatility of the
transmitted power, making it harder to approximate the transmission loss using existing techniques. A robust
and reliable approximation is required, valid across a wide range of transmission values.

Consider a power network with a set of nodes connected by transmission lines, with subset B of nodes with
demand and subset N of nodes with generators. Let di be the real power demand at node i ∈ B, pj , the real
power generated at node j ∈ N and L, the total real power transmission losses in the system.Without loss of
generality let generator node 0 be the slack bus and write N0 = N\{0} for the generation nodes excluding
the slack bus. This paper looks into a new way of modelling the aggregated transmission loss, using multiple
linear regression. The fitted model’s form is

L(k) =
∑
i∈N0

∑
j∈N0

αijpi(k)pj(k) +
∑
i∈B

∑
j∈B

γijdi(k)dj(k) +
∑
i∈B

∑
j∈N0

ηijdi(k)pj(k) + ε(k)

where k = (1, . . . , n) is the observation number, ε(k) is the error and αij , βij and ηij are coefficients fitted
using least squares. The proposed model does not rely only on a particular base case and does not make
simplifying assumptions, as seen in previous models, though we do assume that the topology of the power
network does not change. This makes the model more robust than existing approximations.

In this paper the effect of power demand (load) at each demand point, power generation and voltage magni-
tudes for each generator are tested for eight different scenarios created using J.H. Chows 3-Machine 9-Bus
benchmark problem which is quoted in Zimmerman et al. (2011). In each scenario we compare our proposed
model with loss approximation models currently used in industry. From the analysis we see that our proposed
model outperforms the existing models, and gives good approximations for a wide range of inputs. We also
show that the performance measures used to compare the models can be used to determine a best base case.

Finally, we show that by looking at the effect of voltage on how well our model fits, we are able to determine
voltage limits for generators that are best, in the sense that they minimise the instability caused to load flows
due to improper voltage magnitude values.
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1 INTRODUCTION

High penetration of renewable generation (i.e. wind and solar) posts challenges to power system operators in
grid management and generation scheduling. The inherent intermittency and variability of renewable resources
such as wind and solar require that current industry practices, such as unit commitment (UC) and economic
dispatch (ED), be advanced to accommodate large amounts of renewable generation (Wang et al., 2009). UC
is the problem of optimal scheduling of generating units to be in service for a given period of time, and also for
how long they are to be in service, whereas ED is the problem of determining an economic distribution of the
generation for a given schedule in a static environment. One of the major uncertainties in these optimisation
problems are the transmission losses. The transmission losses satisfy a system of non-linear equations, the
solving of which takes too long to be incorporated into the solution of real time UC or ED problems. Thus
good approximation of the transmission losses is crucial, in particular estimation of the total power loss,
especially for a network with long distance power transmission lines or cases with vast area but low load
density.

Two approaches to approximating the loss are commonly used (Kothari and Dhillon, 2004; Jiang, 1995; Nanda
et al., 1999; Haiwang et al., 2013). The first uses an approximation based on a particular base case, which can
be solved exactly (beforehand). Provided the state of the system, in particular the current aggregated power
demand ratio, is close to the base case this works well. Unfortunately when highly variable inputs from
renewable energy sources are included, the state of the system can quickly move away from the current base
case, rapidly degrading the quality of the approximation. We will use this approach to compare to our proposed
model. The second is to use generalized generation shift distribution factors that are formulated through linear
approximations to the power flow equations, which can be solved quickly. This approach has the advantage
that it gives approximate transmission loss for each line, unlike the first approach which only gives total
transmission loss, but unfortunately it has been shown to give a poor approximation in general (Jiang, 1995).

In this paper, we show that a robust and reliable approximated transmission loss function can be developed
using multiple linear regression on a set of simulated or historical load flow data. This method does not depend
on a particular base case nor does it make any simplifying assumptions about transmission losses, though we
do assume that the topology of the power network is kept constant. The model is an empirical model, meaning
that it is not derived theoretically but rather fitted to a set of observed data. The data can either be from
historical observations of the network, or from exact simulations of the network. Exact network simulations
are time consuming, but only need to be carried out once: once we have fitted our regression model we can
use it without needing further exact simulations.

The effectiveness of our proposed method is tested using a set of scenarios based on the 3-Machine 9-Bus
benchmark problem by Chow quoted in Zimmerman et al. (2011), and we compare it with the approach of
Dopazo (Kothari and Dhillon, 2004), which uses an approximation based on an exact solution for a given base
case. The quality of our approximation can be quantified using statistical performance measures such as the
coefficient of determination and the mean squared error. Our proposed method always performs better than
the approach of Dopazo (Kothari and Dhillon, 2004). Moreover, we show that our statistical performance
measures can be used to determine the best base case to use in the approach of Dopazo (Kothari and Dhillon,
2004), in which case it performs nearly as well as our method.

The paper develops with Section 2 describing the exact transmission loss equations, and the approximation
approach of Dopazo (Kothari and Dhillon, 2004). Section 3 gives the proposed model, then Section 4 applies
our model to eight different scenarios based on our benchmark problem, and compares it to the approach
of Dopazo and also its modified version which represents the loss approximation function used generally in
industry (Kothari and Dhillon, 2004; Murty, 2009). Finally in Section 5 we give some conclusions.

2 POWER FLOW AND LOSSES

Suppose that our power network consists of a set of nodes (busses) Ω, connected by transmission lines. Ex-
istence of resistance and reactance on each transmission line causes losses to be accrued as power flows. We
suppose that on a certain subset of nodes B there is a known demand, and there is a subset of nodes N where
we can generate power. Let di be the real power demand at node i ∈ B and pj be the real power generated at
node j ∈ N . Let L be the total real power lost in transmission, then we must have L =

∑
j∈N pj −

∑
i∈B di.

Because L depends on the pj and di, this equation tell us that if we know the demands and the power generated
at all but one generators, then in a feasible solution the power at the remaining generator is determined. Thus
it is normal to identify one of the generator nodes as a slack bus, and suppose that the power generated at the
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slack bus is a function of the demands and power generated elsewhere. We will denote the slack bus by 0, and
let N0 = N\{0} be the generation nodes excluding the slack bus.

The exact loss on the transmission line from i to j, for i, j ∈ Ω, is

Lij = Sij + Sji

where Sij is the apparent power in the ij direction given as

Sij = Vi((V
∗
i − V ∗j )Y ∗ij + V ∗i Y

∗
ij0)

with Vi being the complex voltage value at a bus i, V ∗i its conjugate, Yij the admittance of line ij and Yij0,
the shunt admittance.

Kothari and Dhillon (2004) showed that the total loss can be written as

L =
∑
i∈Ω

∑
j∈Ω

Lij =
∑
i∈B

∑
j∈B

diBijdj −
∑
i∈B

∑
j∈N

(Bij +Bji)dipj +
∑
i∈N

∑
j∈N

piBijpj (1)

where

Bij =
cos(θi − θj)

|Vi||Vj | cos(φi) cos(φj)
Rij .

Here Rij is the real impedance on line ij, φi = arctan(Pi/Qi), Pi is the real power at node i (so this would
be pi if i ∈ N or −di if i ∈ B), Qi is the reactive power at node i, and θi is the electricity current phase angle
at node i. (See also Murty, 2009.)

It is seen that coefficients Bij can only be calculated once all pj are known, which means that L has to be
known too. None-the-less we can use Equation (1) to obtain a quadratic approximation to L, by calculating
the Bij for a fixed base case, and then using these fixed Bij as the pj vary. We call this a Dopazo type model.
Clearly for this to work, we require that the most suitable base case problem is chosen for the future predicted
system, as a wrong choice of base case (i.e. a base case that differs significantly from the actual system state),
would give a bad prediction. This approximation is generally only reasonable if the voltages, phase angles,
resistance/reactance ratios, and relative loads all remain fixed (so total load can vary within these constraints).
In our experience Dopazo type approximations are particularly sensitive to changes in the relative loads at
each node, which makes their application especially challenging for a power system interconnected with RE,
as its intermittent generation causes a volatile environment.

3 MULTIPLE LINEAR REGRESSION (MLR) FOR AGGREGATED TRANSMISSION
LOSS

Our model is an empirical model for L, taking as inputs the di and pj , but not depending explicitly on the Vi,
θi or φi. Using a particular test case, we will show that we can approximate L with good accuracy for a wide
range of di, pj , Vi, and φi, spanning the limits of the whole system. Once fitted, the model does not need to
be adjusted unless the network topology changes.

To fit the model we need data. We will suppose that for k = (1, . . . , n) we have observations of the demand,
generation and loss, that is we observe

di(k) for i ∈ B, pj(k) for j ∈ N0, and L(k).

It is not assumed that Vi(k), θi(k) and φi(k) are constant in k, so it is possible to have different values of L
for the same values of di and pj . The data can come from past observations of the system we are modelling,
or from a numerical simulator such as MATPOWER 4.1, (Zimmerman et al., 2011), which is what we used
for the test case described in the next section. In either case it is necessary that the data covers the entire range
of states that the system will operate in.

Our model has the form

L(k) =
∑
i∈N0

∑
j∈N0

αijpi(k)pj(k) +
∑
i∈B

∑
j∈B

γijdi(k)dj(k) +
∑
i∈B

∑
j∈N0

ηijdi(k)pj(k) + ε(k) (2)

where ε(k) is the error we get using this quadratic form. This is an example of a multiple linear regression
(MLR), and the coefficients αij , βij and ηij can be fitted using least squares. Once fitted we do not need to
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recompute the coefficients unless there is a change in the whole network’s topology. This model’s structure is
similar to (1), but note that to ensure that the model is non-singular we have removed the dependent p0 terms,
corresponding to the power generated at the slack bus. p0 can always be recovered since

p0 =
∑
i∈B

di −
∑
i∈N0

pi + L.

How well the model fits can be quantified using for example the coefficient of determination and mean squared
error, and we can also use these to compare the model to alternatives.

4 NUMERICAL COMPUTATION AND ANALYSIS

To test our model we used a standard benchmark network 3-Machine 9-Bus system (Zimmerman et al., 2011),
consisting of nine nodes, three of which have generators attached. The first generator node was chosen as the
slack bus. Using this network we developed eight scenarios, depending on how we restricted the demands
and voltages. For each scenario we generated a data set of 1000 observations using the MATLAB package
MATPOWER 4.1 (Zimmerman et al., 2011). This is a simulation tool for solving power flow and optimal
power flow problems. Scenario 1 avoids any assumptions about loads, voltage magnitudes or power factors,
cos(φi), allowing all of these to vary. Scenarios 2, 3 and 4 restrict the voltage to its mid, min and max values
respectively. These scenarios provide us an insight into the effect of the voltage on the stability of the power
system in a volatile load environment. Scenarios 5–8 impose the assumption made by many past models,
namely that the ratio of the individual loads over the total load stays fixed. This allows us to compare our
model to Dopazo type models in a situation favourable to the latter. The power factors for all scenarios are
varied strictly between 0 and 1.

For each scenario a set of 1000 observations of pi, di and |Vi| was used. We then fitted the model (2) and
calculated two goodness of fit measures, the coefficient of determination R2, and the mean squared error
MSE. Let L̂(k) be our fitted approximation to L(k), then

R2 = 1−
∑

k(L(k)− L̂(k))2∑
k(L(k)− L̄)2

∈ [0, 1]

MSE =
1

n

∑
k

(L(k)− L̂(k))2

where L̄ is the average loss. We denote this model MLR.

We next compared our model to an optimised Dopazo model. Here we constructed 1000 models, choosing
each data point in turn as the base case. Given a base case, we used it to calculate the coefficients Bij , then
keeping the Bij fixed the loss was approximated using (1), and the R2 and MSE calculated as above. We then
chose the base case that minimised these. That is, we chose the base case that gave the best approximation as
measured by high R2 ≈ 1 and low MSE ≈ 0. It turns out that in our example the base case that produced the
maximum R2 also gave the minimum MSE each time. We denote this model DM.

We also compared our model to a restriction of the Dopazo model corresponding to the approach commonly
used in industry (Kothari and Dhillon, 2004; Murty, 2009). Here we again construct 1000 models, choosing
each data point as a base case and calculating the Bij for that case. However, when we use (1) to estimate the
loss, we don’t allow the demand di to vary, but keep these values equal to their values at the base case. That
is, we are using just the generated power pj as inputs into the approximation, and not the demands di. Again
we choose the best approximation according to the R2 and MSE, and we denote this model D.

Our test scenarios were designed to test how robust the MLR and Dopazo models were to variation in the
voltage magnitudes, demand, demand aggregated ratio and power factor. All our scenarios used the same
power network topology and therefore the real values of the impedance matrix, Rij , were constant, while di,
pj , Vi, θi and φi were varied. Table 1 reports the results of the performance measures R2 and MSE for all 3
models in all 8 scenarios. We see that the R2 value and the MSE value of the MLR are the best for all given
scenarios.

It is to be noted that the D model performs best when the ratio of the aggregated demand over total demand is
kept constant. Its R2 value is always larger than 0.9 and its MSE value is between 0.7 and 0.3. These values
improve when the voltage magnitude is kept constant and are the best when |Vi| = 0.9. However for a volatile
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demand ratio its performance reduces drastically. It is also to be noted that in a volatile environment the best
MSE value is observed when |Vi| = 1.1.

The MLR method gave R2 values all close to 1, though its fit was poorest when the |Vi| varied. Its also
noted that for both constant and non constant di/

∑
i∈B di, the best performance was seen when |Vi| = 1.1.

Comparing the results of the DM model to the MLR model, it is seen that the DM model’s performance is
approximately the same as the MLR’s, though the MLR still performs a little better for all cases. It is also to
be noted that the DM model performs best when |Vi| = 1.1.

How well the three models fit can also be judged by plotting predicted losses against exact losses, as in Figures
1–6. Larger values of R2 and smaller values of mean squared error correspond to a stronger linear relationship
with a slope of 1. From these figures we also see that the given benchmark problem is more stable, that is the
loss is more regular, when voltage magnitudes are kept close to the value of 1.1 (scenarios 4 and 8).

Table 1. Results (V indicates varying and C constant)
Scenario di/

∑
di |Vi| R2

MLR MSEMLR R2
D MSED R2

DM MSEDM

1 V V 0.965 0.609 0.408 10.147 0.958 0.713
2 V 1.0 0.996 0.062 0.425 8.735 0.994 0.094
3 V 0.9 0.988 0.284 0.405 14.268 0.981 0.448
4 V 1.1 0.998 0.02 0.436 5.433 0.997 0.028
5 C V 0.952 0.459 0.931 0.675 0.946 0.527
6 C 1.0 0.995 0.076 0.921 0.703 0.993 0.115
7 C 0.9 0.995 0.045 0.988 0.0471 0.994 0.054
8 C 1.1 0.997 0.010 0.968 0.282 0.996 0.013

Figure 1. Graphs illustrating the prediction accuracy of (a) MLR, (b) DM and (c) D loss model for scenario 1

Figure 2. Graphs illustrating the prediction accuracy of (a) MLR, (b) DM and (c) D loss model for scenario 2

5 CONCLUSIONS

This paper proposed a new model for approximating the transmission loss using multiple linear regression. It
was seen that model outperformed the Dopazo model on a given test network. The robustness of the model was
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Figure 3. Graphs illustrating the prediction accuracy of (a) MLR, (b) DM and (c) D loss model for scenario 3

Figure 4. Graphs illustrating the prediction accuracy of (a) MLR, (b) DM and (c) D loss model for scenario 4

Figure 5. Graphs illustrating the prediction accuracy of (a) MLR, (b) DM and (c) D loss model for scenario 5

Figure 6. Graphs illustrating the prediction accuracy of (a) MLR, (b) DM and (c) D loss model for scenario 6
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Figure 7. Graphs illustrating the prediction accuracy of (a) MLR, (b) DM and (c) D loss model for scenario 7

Figure 8. Graphs illustrating the prediction accuracy of (a) MLR, (b) DM and (c) D loss model for scenario 8

reflected through good performance measures and scatter plots for a variety of scenarios with volatile demand.
It was also shown that the mean squared error and coefficient of determination could be used to determine a
good base case problem for the Dopazo model, however we actually get a better fit with less effort by fitting
our quadratic model using least squares. Finally, we showed that the MLR and Dopazo models could also be
used to suggest suitable voltage limits for a given power system.
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