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Abstract: We present an application of a single-indicator forecasting model to predict short-term urban air
pollution levels in Europe. Prior knowledge of hourly, daily, and weekly levels of pollution can assist urban
planners in policy and management procedures. Moreover, predictions using large-scale pollution forecasting
systems, such as the Monitoring Atmospheric Composition & Climate program and the obsAIRve project, can
be supported at the local scale by a statistical model using historical data from ground stations. An example of
the use of historical data from ground stations is provided in the previous work of Chiera et al., [2010] in which
forecasts of the El Niño Southern Oscillation, represented by a two-state digital signal of the atmospheric
pressure, were provided. Key to these forecasts was the concept of persistence, introduced to capture the
observed behaviour of the digital signal remaining in one state for a prolonged time, before switching to the
other state. This persistent behaviour was captured using Bayesian statistics to yield the CFZG Model, that is
an adaptive Bayesian single-indicator forecasting model of a quasi-stochastic climate process.

In this paper we augment the methodology of Chiera et al., [2010] to produce a multi-indicator model to
predict pollution levels at measuring stations located in 36 European nations, based on observed persistent
behaviour in air quality. An attractive feature of the adapted usage of the CFZG model is that it can be
applied to multiple pollutant signals including all of the primary European pollutants such as Nitrous Oxides,
Particulate Matter, Volatile Organic Compounds and Ozone. Unlike the single-indicator CFZG model, which
used measuring stations from two locations only, we use measuring stations for pollutant signals which are
geographically disparate, located in both rural and urban sites across 36 countries, all of which are registered
with the European Environmental Agency. We present examples of typical nitrous oxide and ozone levels
across selected sites and forecasting results for our chosen case study — rural Bosnia-Herzegovina — and
compare the forecast against a control test that uses a random signal.

Keywords: Air Quality, Statistics, Persistence, Modelling, Forecasting, Bayesian

20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013 
www.mssanz.org.au/modsim2013

1889



D.S. Zachary and B. Chiera and J. Boland, Air Quality Forecasting in Europe using Statistical Persistence

1 INTRODUCTION

The quantification of atmospheric pollution is an important societal concern. In past decades, European legis-
lation has specified the need for member states to forecast and detail air composition, both in terms of gaseous
and particles species. Two types of modelling forecast systems exist, both based on the use of meteorological
data and chemistry models: statistical and deterministic. Historically, statistical models have played an impor-
tant role although have generally been replaced since the 1980s by deterministic models. The latter have been
developed using the well established European measuring networks, Menut and Bessagnet [2010], Balk et al.,
[2011] and have been very successful for forecasting on the continental scale.

A major weakness present in both modern simulation and deterministic air quality models is the uncertainty
linked to emissions. An important database for European emissions is the European Monitoring and Evaluation
Programme (EMEP [2013]) which has, for example, a typical resolution of 50 km and therefore cannot
provide details for accurate local pollution forecasting. Data is often available only by downscaling and then
used as input, for example, to the chemistry transport (deterministic) models that require smooth emission
data at hourly, daily, weekly, and seasonal levels. Moreover, pollution profiles developed by these models
require the use of averaged meteorology and human activity changes (Menut and Bessagnet [2010]). A
combination of statistical and deterministic models can however be advantageous, where on small scales, data
may be limited or missing. Refined knowledge on these smaller scales can assist urban planners in policy and
management procedures, while short-term air quality forecasting conditioned on anthropogenic hypotheses,
such as emissions maps, can enhance the historical knowledge of the air pollution signal.

An important stream of statistical methodology is to the application of modelling quasi-stochastic signals in
climate. The class of such signals is large and contains a number of domains ranging from water and soil
modelling, through to the El Niño Southern Oscillation as well as air pollution. The underlying dynamics of
many quasi-stochastic signals are still not fully understood although active work in this area continues (Liu
[2010], Stewart [2010], De-Zheng [2007]) and approaches range from synthetic multi-model forecasting
(Na et al., [2011]) to capturing statistical trends (L’Heureux et al., [2012]). A recently introduced novel
statistical approach to capturing single-indicator quasi-stochastic processes was the CFZG Model, an adaptive
Bayesian model, used to capture time series data of the El-Niño Southern Oscillation as a binary signal,
yielding competitive forecasting with relatively little computational overhead (Chiera et al., [2010]). The
success of the CFZG model has opened up the prospect of other applications in the natural and social sciences
where the underlying process is not understood or cannot be captured in a single framework.

A fundamental concept exploited in the CFZG model was that of persistence, that is, the degree of continuity
in remaining in the current physical state before a phase transition is effected, due to the natural mechanisms
of the physical process. The notion of persistence in quasi-stochastic signals can be generalised to a number of
physical and environmental processes. Moreover, the CFZG model explores the full history of the signal and
captures any delayed processes by learning from all available past information. The method can be used to
detect natural driving forces in the signal, particularly in the presence of unexpected patterns and as such the
CFZG model quantifies and combines events that are both near and far in time from a forecasting perspective.

In this paper we will utilise the general construction of the CFZG model to forecast short-term air quality levels
and demonstrate an extended usage of the CFZG model to a European case study for which 36 nations have
provided data to the European Environmental Agency (EEA) air quality database (EEA [2013]). The hundreds
of stations represented in the EEA database provide a detailed view of urban and rural locations throughout
Europe via air quality monitored data and information as well as multi-annual time series of measurement
and meta-information for several pollutants. The applicability of the enhanced CFZG model will be to help
fill in the gaps for local-scale forecasting, complementing large ensemble environmental models, such as the
Monitoring Atmospheric Composition & Climate project MACC [2012] or in the obsAIRve project ObsAIRve
[2013] using remote sensing information from the project GMES [2012].

This paper is outlined as follows. In Section 2 we present a generalised version of the CFZG model as well
as the general air pollutant forecasting tool, using the data available from the EEA database. In Section 3 we
describe the scope of air quality monitoring framework and the main details needed for this case study, as well
as assimilation. In Section 4 we present the European case study and give our conclusions in Section 5.

2 THE CFZG MODEL

The CFZG model (Chiera et al., [2010]) is an adaptive Bayesian model for forecasting a binary digitised time
series data representing a physical process. In the original application, a series of +1 and−1 values were used
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to correspond to positive and negative values in the physical process, with the baseline to determine the change
between these positive and negative values, selected as 0.

Here we introduce the nomenclature Above and Below to represent meaningful events in the air pollution cycle.
Specifically, Above refers to air pollution being above a suitably derived baseline for the pollutant of interest,
while Below captures instances where air pollution is below this same baseline. Persistence is the scenario in
which air pollution is consistently in an Above or Below phase. We introduce the use of three baselines for
two distinct circumstances: (1) in the case of cyclic pollution, such as seasonal ozone, running averages and
sinusoidal fits of the seasonal data; and (2) during ‘regular’ conditions, the use of a simple average.

We denote by A and B the Above and Below phases respectively. We can set aside a portion of the data to
provide historical information and count the Above and Below events to compute probabilistic persistence of
the signal. We begin with a counting scheme over the historical data for the number of Above episodes

A1 = Number of Above episodes of length 1
A2 = Number of Above episodes of length 2

...
...

Aa = Number of Above episodes of length a

where a is the length of the longest recorded A-episode. We can similarly define B1,B2, . . . ,Bb for Below
episodes where b is the length of the longest recorded B episode. We can then determine the total number of
Above and Below episodes as

AT =
a∑

i=1

Ai and BT =
b∑

i=1

Bi

respectively, which naturally partitions the historical portion of the data series into a total ofAT +BT episodes.
Using these counts we can compute the conditional probabilities

αj = P (Aj+1|Aj), j = 1, 2, . . . ,a− 1

to yield the probability of observing a (j + 1)st Above event given j consecutive Above events have already
been observed. Similarly the conditional probability

βj = P (Bj+1|Bj), j = 1, 2, . . . ,b− 1

to give the probability of observing a (j + 1)st Below event given j consecutive Below events have already
been observed. Both of these conditional probabilities have natural estimators

α̂j =

∑a
i=j+1Ai∑a

i=j Ai
, and β̂j =

∑b
i=j+1 Bi∑b

i=j Bi

.

Due to the Bayesian approach of the CFZG method, a jth positive event given j − 1 consecutive positive
previous events. This probability will almost certainly be different to the probability of observing a j +
1st positive event directly following j consecutive positive events with the difference in these distributions
exploited when forecasting. Figure 1 describes the future possible binary trajectories of the digitised signal
based on these conditional probabilities. In this example a sequence of j consecutive 1s,Aj , has been observed
and the probabilistic trajectories of the data are shown in the tree, with the relevant probabilities on the edges
of the tree resulting in the sequence shown at each node.

3 CASE STUDY: AIR POLLUTION ACROSS 36 EUROPEAN NATIONS

The data for this case study is comprised of air pollutant signals from several hundred air quality stations
from 36 nations and is compiled in the European Environmental Agency (EEA) database where continuous
measurements of several pollutant species are regularly tabulated. Pre-modelling analysis of the database
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… 1,1,1,1

… 1,1,1,1,1

… 1,1,1,1,-1

… 1,1,1,1,1,1

… 1,1,1,1,1,-1

… 1,1,1,1,-1,1

… 1,1,1,1,-1,-1

αj

αj+1

1−αj+1

1−αj

1−β1

β1

j

Figure 1: The probabilistic evolution when an Aj sequence has been observed Chiera et al., [2010].

included the download of data, checking for data consistency and filtering stations that had insufficient and/or
unreliable datasets. The subset of the stations that have completed initial pre-testing are shown in Figure 2
along with details of the measurement frequency. The station map (Figure 2) shows approximately 80% of the
total number of stations with extensive coverage of Western Europe. Noteworthy exceptions where coverage
is lacking includes France, Spain and Portugal.

Figure 2: Stations that have currently been studied in the pre-analysis stage. Data has been taken at different
frequencies: � (weekly), • (daily), N (daily max), H (hourly), � (hourly - eight hour running average)

The EEA database pollutants include gases, hydrocarbons and suspended particles (Table 1) and most sta-
tions measure multi-pollutants. Measurements are further classified according to: (1) station type (Traffic,
Industrial, Background); and (2) zone type (Urban, Suburban, Rural) which, for readability considerations, are
not shown in Figure 2. Each station is designated with a precise location using latitude and longitude. The
participant nations that contribute to the EEA database are given in Table 2.

Table 1: EEA database pollutants.

Gases NO, NO2, O3, PM10, SO2, CO
Hydrocarbons 3-Trimethylbenzene, i-Pentane (2-methylbutane), C6H6, Toluene
Suspended particles PM10, Cd (Cadmium), Lead, BaP (Benzo-pyrene), Black Smoke
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Table 2: Participant nations

AU - Austria ES - Estonia IT - Italy NO - Norway
BA - Bosnia & Herzegovina FI - Finland LI - Liechtenstein PL - Poland
BE - Belgium FR - France LT - Lithuania PT - Portugal
CH - Switzerland GB - Great Britain LU - Luxembourg RO - Romania
CY - Cyprus GR - Greece LV - Latvia RS - Serbia
CZ - Czech Republic HR - Croatia MK - Macedonia SE - Sweden
DE - Germany HU - Hungary MT - Malta SI - Slovenia
DK - Denmark IE - Ireland ME - Montenegro SK - Slovakia
EE - Spain IS - Iceland NL - Netherlands TR - Turkey

Figure 3 shows an example of a pre-analysis data check that also serves to indicate an appropriate baseline
for the pollutant signals. In this case, a two and one year time series for NO2 and O3 are shown for the
period 1 January 2006 to 21 December 2006 and 2007, respectively, at a background (rural) station in Bosnia-
Herzegovina, about 50km west of Sarajevo and 10km north of the town Bradina and an urban measurement
station in Sarajevo. The O3 signal, and to a lesser extent, the NO2 signal, show seasonal features and in this
case an appropriate baseline would be either a running average or sinusoidal fit of the signal, from which
Above and Below phases can be captured. An example of the mean for a 40-day running average for NO2 and
O3 are given (black lines), along with a sine-curve fit (red lines).
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Figure 3: An example of daily (a) NO2 and (b) O3 times series data for Bosnia-Herzegovina from 1 January
2006 to 31 December 2007 (blue lines). Days where measurements were not available were omitted. The red
lines indicate sinusoidal baselines while 40-day running average baselines are indicated in black.

4 RESULTS AND DISCUSSION

An initial review of the European data has revealed that a large set of European station data is available,
both in rural and urban settings, for different sectoral emissions (traffic, industry, residential areas), multiple
pollutants (Table 1) and over different measurement frequencies, namely hourly, daily, and weekly (Figure 2).
Approximately 80% of the total number of stations have been reviewed to date.

Systematic testing has allowed for a first look at the data set for Bosnia-Herzegovina and a comparison of
rural and urban sites. We focused on a section of the original air quality signal that displayed the qualities of
remaining in both the Above and Below states for a prolonged period of time (Figure 4 (a) and (b) for rural
sites, and (c) and (d) for urban sites). In this preliminary test we considered conditional forecasting in which
we assumed the current state is prolonged, as well as unconditional forecasting. For conditional forecasting,
the current state of Above or Below was determined by the value of the air quality measurement relative to
the baseline (purple dashed line −−, Figure 4 (a) and (b)). For example, in Figure 4 (a), Day 5 commences
above the baseline and a forecast conditioned on being in the Above phase is produced (–∇). On Day 14 the
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signal is below the baseline and thus the model is conditioned on the Below state (− · 4). We also consider
the unconditioned forecast (�) which uses only the data, without specifically expecting to remain in the Above
or Below state, instead allowing the data itself and Bayesian nature of the model to forecast air quality.

A visual comparison reveals that for the forecasts produced by the conditioned model, although the amplitude
of air quality was over- and/or under-estimated, overall, the CFZG model was able to follow the trend of air
quality for both NO2 and O3. The unconditioned forecast produced similar results. A test of forecast validity
(not shown here due to space considerations) was conducted by comparing the model against a control signal,
defined at each time step by A · x, where x is a flat random value defined on (-1,1), of amplitude A, chosen to
be equivalent to the data signal amplitude. The standard deviations were calculated for the difference between
the data and model, and then for the model and control signal. For both the NO2 and O3 data for the rural and
urban stations, the control signal gave standard deviations ranging from 10 - 20% larger than that produced by
the model. The improvement of the model over the control signal indicates a promising use of the method for
systematic and regular forecasting at stations. Finally, we note that these results are preliminary and are subject
to further testing for more pollutant signals across the 36 European nations for a more complete comparison
of urban and rural air quality signals. However, the initial results are encouraging for the future applicability
of the CFZG model to air quality modelling.
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Figure 4: Forecasts for NO2 and O3 are given for a rural area ((a),(b)) and an urban area in Sarajevo ((c) and
(d)). The original signal (–, blue) is compared with the forecast conditioned on Above (–∇ red) , Below (−·4
green) and the unconditioned model (black �). The baseline also shown (purple, −−).

5 CONCLUSIONS

The single-indicator CFZG forecast model has been extended to the multi-indicator problem of short-term
air pollution forecasting of gases, hydrocarbons and suspended particles signals measured at a collection of
urban and rural sites across 36 European nations. Appropriate baselines to indicate an air quality signal being
Above or Below a meaningful measuring point included an average, a running average and sinusoidal signals
to allow for seasonal behaviour of air pollution. This study focused on a rural station west of Sarajevo and
initial validations indicated that both the conditioned and unconditioned models for Above and Below these
baselines performed in a more meaningful fashion than when applied to the control signal, defined as a random
signal with a similar amplitude as the data. These initial results are encouraging for further exploration.
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Future work will consider a selection of case study areas that capture a salient distribution of rural and urban
air quality information. The model will be further developed to include an integrated signal indicator for a
better understanding of signal strength, as well as the integration of information from other relevant physical
conditions such as geographical, orographical or meteorological, that could affect the signal, with an ultimate
aim of a forecast map. It is intended that the results from this work will be used to mitigate air pollution risk
by better anticipating days of poor air quality at specific locations.
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