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Abstract:  Intensification of grazing industry management is a cause of concern as a potential source of 
nitrogen (N) pollution at the catchment scale. To explore the impact of grazing industry and its management 
on N loads, a point-to-catchment approach was developed in this study. Point-scale N losses in leaching and 
runoff were estimated with two models, DairyMod and HowLeaky, for unique combinations of management, 
soil type, and climate (i.e. Hydrological Response Units, HRU). HRU N losses were divided in dissolved N 
(nitrate) in runoff, particulate N in runoff, and dissolved N in leached below the root-zone. The Catchment 
Scale Management of Distributed Sources Model (CatchMODS) was used to assess annual average nutrient 
budgets at the catchment scale. The spatial units were subcatchments, which comprised a river reach and the 
area (of about 20-60 km2) delivering water, sediment and nutrients to it. River reaches were connected to 
upstream and downstream reaches in a node-link system. Subcatchment annual average N loads in runoff 
were assigned proportionally to HRU area in each subcatchment, and adjusted for topography. N loads from 
leaching were estimated from subcatchment average monthly N concentration in the soil water below the root 
zone and the monthly volume of subsurface water reaching the stream; monthly loads were summed over the 
simulation period and divided by the number of years to get the annual average leached N load. Total N loads 
generated by streambank and gully erosion were estimated from erosion rates and N content of gully and 
streambank eroding walls. In-stream attenuation of total N was modeled as a first order decay exponential 
function, assuming an inverse relationship between in-stream removal and stream size. The model was 
applied to the Moe River catchment in West Gippsland to assess the impact of grazing management 
intensification on TN loads at the catchment outlet. The uncertainty in TN load predictions due to catchment 
model parameters was assessed with a Bayesian inference method, following the Flexible Model 
Environment (FME) procedure implemented in R. Sensitivity and identifiability analyses were conducted to 
screen sensitive parameters and identify parameter sets that could be concurrently assessed. A Markov-Chain 
Monte-Carlo (MCMC) analysis was conducted to obtain parameter sets conditioned on mean annual flow and 
average annual sediment and nutrient loads observed at the outlet. These conditioned model parameter sets 
were then used in Monte Carlo Simulations (MCS) to propagate model uncertainty in land use scenario 
analysis. Of the 15 initial catchment model parameters, four upscaling parameters that regulated transfer of 
water, sediment and nutrients from HRUs to the subcatchment could be successfully conditioned using water 
quantity and quality data observed at the outlet: the fraction of water surplus to stream discharge F; the 
hillslope sediment delivery ratio SDR, and the in-stream nutrient attenuation parameters. Of 5000 MCMC 
simulations, 3431 were accepted. The best posterior parameter set resulted in a TN load of about 440 t TN y-1 

at the outlet, which was very close to TN load estimated from monitoring station data (430 t TN y-1); TN 
sources largely coincided with areas dominated by dairy land use. The MCS runs showed that intensity of 
grazing management had a significant impact on TN loads: intensification of the dairy industry based on 
increasing use of N fertiliser could triple current TN loads, up to about 1350 t TN y-1. Conversely, 
extensification (little or no use of N fertilizer) could reduce TN loads to about 30% (i.e. 110-140 t TN y-1). 
Other sources of uncertainty, most notably uncertainties in point-scale model inputs and uncertainties in 
model structure, could also impact model predictions, but they could not be assessed because of insufficient 
data. However, because of their upscaling function, the four parameters that were assessed are believed to 
characterize most of model uncertainty, and may help buffer propagation of uncertainty from point-scale 
inputs. Notwithstanding the uncertainty in model results, grazing management intensity was identified as 
having a major impact on TN loads reaching the Moe River catchment outlet.   
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1. INTRODUCTION 

Intensification of grazing management via increasing farm nutrient imports and livestock density is a cause 
of concern as a potential source of nitrogen (N) pollution in the environment. Assessing the impact of grazing 
management on water bodies requires an integrated approach to capture environmental and management 
conditions in paddocks that affect the amount and partitioning of nutrient losses in surface and subsurface 
pathways, as well as other nutrient sources and catchment attenuation processes which affect the nutrient 
loads of receiving waters.  

The Gippsland Lakes are a large coastal lagoon system of international ecological significance that is 
threatened by eutrophication (Harris et al., 1998). Diffuse sources of nutrients from agricultural systems have 
been identified as major contributors to the excessive nutrient levels in the Lakes. The Moe River is a 
tributary of the Latrobe River, which is the largest contributor of water and nutrient loads to the Lakes. The 
Moe River catchment is dominated by dryland dairy systems and given the general trend of intensification of 
grazing industries, particularly dairy, it is important to assess the potential impact of such changes on the 
water quality of the river network and eventually to the Lakes. 

The objective of this paper was to assess the potential impact of intensification of dairy industry on N loads 
reaching the Moe River catchment outlet. A point-to-catchment scale model was built to assess the average 
annual N budget of the catchment, accounting for environmental factors, management intensity, landscape 
nutrient sources and attenuation processes. Given the complexity of the model, an uncertainty analysis was 
conducted to assess the impact of catchment parameters - conditioned by water monitoring quality 
monitoring data, on N loads predicted for scenarios of differing grazing management intensity.  

2. THE MOE RIVER CATCHMENT 

The Moe River catchment area (with outlet at Victorian Water Quality monitoring station 226402, DSE 
2012) is 577 km2. The western slopes are dominated by Ferrosols (25% of catchment); the north-eastern 
slopes by texture contrast and some gradational soils (Chromosols and Dermosols; 43%); whereas the 
southern slopes are dominated by texture contrast, sodic soils (Sodosols; 10%). The main plain is dominated 
by Vertosols and Hydrosols (19%). Forest and plantations occupy approximately 16% of the catchment area, 
dryland dairying 30%, and a patchwork of beef enterprises intermixed with dairy enterprises 44% (Figure 
1a). Based on 2006 ABS census data and for the purposes of this study, this mixed dairy/beef land use was 
assumed to comprise 50% of beef enterprises and 50% of dryland dairying enterprises.  

Grazing systems were defined based on local surveys and in consultation with district extension staff (Stott et 
al., 2013). The beef system was assumed to have no fertilizer N input and minimal supplementary feed. Four 
predominantly pasture-grazed dryland dairy systems were defined in terms of use of N in feed and chemical 
fertilizer, and milk production per unit area. The most intensive system (S-I) assumed 200 kg N/ha fertilizer, 
1.7 t DM (Dry Matter)/cow of concentrate fed, and produced about 990 kg Milk Solids (MS)/ha (2.1 cow/ha 
stocking rate). The most extensive system (S-IV) assumed 35 kg N/ha fertilizer, 1 t DM/cow of concentrate 
fed, and produced about 410 kg MS/ha (1.3 cow/ha stocking rate). The other two systems were defined in 
between these two extremes. A fifth,  ‘advanced’, alternative intensive system (S-A) was defined whereby 
milk production was increased by substituting chemical N fertilizer application to paddocks with greater 
capture and recycling of effluent waste and with supplementary feed to livestock. To explore the impact of 
changes in grazing management on N loads at the catchment outlet several land use scenarios were defined. 
The baseline scenario for current conditions assumed, based on expert local knowledge and census data, that 
dairy farming in the Moe catchment was composed of 10% of S-I, 30% of S-II, 40% of S-III, and 20% of S-
IV. The alternative scenarios were: DI - Dairy intensification under current practice (all dairy land use as S-
I); DE - Extensive dairying (all dairy land use as S-IV); DA - ‘advanced’ intensive dairying (all dairy land 
use as S-A); B – all grazing land use as beef. 

3. THE POINT-TO-CATCHMENT MODEL  

A point-to-catchment model developed for sediments and phosphorus (P) (Vigiak et al. 2011a; 2012) was 
expanded in this study to include modeling of total N load in the Moe River. Daily water, sediment and 
nutrient losses in runoff and leaching were estimated for Hydrologic Response Units (HRU), i.e. unique 
combinations of climate, soil, and land management, with two point-scale models (DairyMod and 
HowLeaky). The DairyMod model was used to simulate daily biomass cover and N losses in leaching; the 
HowLeaky model was used to simulate daily water, sediment and nutrient losses in runoff. Thayalakumaran 
et al. (2013) describe the coupling of the two models.  
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The catchment model was based on CatchMODS. The spatial units were subcatchments comprised of a river 
reach and the area (of about 20-60 km2, Figure 1a) delivering water, sediment and nutrients to the reach. 
River reaches were connected to upstream and downstream reaches in a node-link system. HRU losses were 
upscaled proportionally to their area in the subcatchment. Contributions from point sources, gullies and 
streambanks were added to subcatchment nutrient budget. Water, sediment, and P modeling are described in 
Vigiak et al. (2011a; 2012). Hereafter we briefly describe the extension of nutrient modeling to N.  

3.1. Nitrogen point-to-catchment model 

N modeling was developed broadly following the concepts used for P (Vigiak et al. 2012). HRU N losses 
were modeled as dissolved N (nitrate) in runoff (DN), particulate N in runoff (PN), and dissolved N leached 
below the root-zone (LN). HRU daily N losses in runoff were summed for the simulation period and divided 
by the number of years of the simulation to get annual average dissolved N load (DNHRU, kg ha-1 y-1) and 
particulate N load (PNHRU, kg ha-1 y-1). Subcatchment DN load (DNSUB, kg y-1) was the sum (for all HRUs of 
the subcatchment) of the products of DNHRU times the HRU area in the subcatchment (AHRU, ha). 
Subcatchment particulate N load PNSUB (kg y-1) was the sum (for all HRUs of the subcatchment) of the 
products of PNHRU times AHRU, adjusted for the subcatchment topography (by means of the Universal Soil 
Loss Equation LS factor, LSSUB), the hillslope sediment delivery ratio (SDR, fraction), and the hillslope N 
enrichment ratio (NER, fraction, which in turn was a function of SDR):     

 ܲ ௌܰ = ܴܦܵ ∙ ܮ ௌܵ ∙ ܴܧܰ ∙ ∑ ܲ ுܰோܣுோுோ∈ௌ       (1) 
 
HRU daily N loss in leaching was summed at monthly scale (LNHRU,i, kg ha-1 m-1). The subcatchment 
monthly average N concentration (LCSUB, mg L-1) in the drainage water (below the root zone) was assumed 
to be equal to the total monthly leached loads (kg) divided by the monthly drainage volume (DVi, ML):   

ௌ,ܥܮ  = ∑ ܮ ுܰோ,ܣுோுோ∈ௌ ∑ ܦ ுܸோ,ܣுோுோ∈ௌ⁄      (2) 
 

 

Figure 1. a) Moe River land use, and b) model TN load emission (t km-2 y-1). 

where the subscript i indicates the month of the simulation period. The subcatchment monthly leached N load 
reaching the stream was equal to the monthly leached concentration by the minimum between the monthly 
slow flow generated in the subcatchment (SFSUB,i), and the subcatchment drainage volume (ML):  

ܮ  ௌܰ, = ௌ,ܥܮ ∙ min(ܵܨௌ,, ∑ ܦ ுܸோ,ܣுோ)ௌ        (3) 
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The subcatchment annual average leached load (LNSUB, kg y-1) was the sum of the monthly leached loads in 
the simulation period divided by the number of years of the simulation.   

Total N loads generated by gully or streambank erosion (TNG+S; kg y-1) was calculated as: 

 

 ܶ ீܰାௌ = 10ି(ܶ ீܰ ଵ∆ಸ ௌܩ	 + ܶ ௌܰ ଵ∆ೄ 	ܵௌ)      (4) 

 
where TNG = total N content of gully wall (mg kg-1); ΔG = fraction of gully wall (<63 μm) contributing to 
suspended sediments (i.e. all N content of the eroded walls was assumed to be attached to suspended 
sediments); GSUB= subcatchment annual suspended sediment load originated by gully erosion (kg y-1); TNS = 
total N content of streambank wall (mg kg-1); ΔS = fraction of streambank wall contributing to suspended 
sediments; and SSUB = subcatchment suspended sediment load originated by streambank erosion (kg y-1).   

Finally, the incoming subcatchment annual average total N (TNIN, kg y-1) was equal to: 

 ܶ ூܰே = ܦ) ௌܰ + ܲ ௌܰ + ܮ ௌܰ) + ܶ ܰ	 + ܶ ீܰାௌ + ܶ ܰ     (5) 
 

where TNP (kg y-1) was total N load from point sources and TNUP (kg y-1) was the total N load received from 
the upstream areas.  

In-stream total N attenuation was simulated as a first-order, exponential decay process. Assuming an inverse 
relationship between in-stream removal and stream size, attenuation was calculated as: 

 ܶ ை்ܰ ܶ ூܰே		ൗ = ݁ቀି௭ಿೄೆಳ ெிೄೆಳൗ ቁ        (6) 

 
where zN (ML m-1 y-1) is an in-stream attenuation parameter to be calibrated against total N observed at water 
quality monitoring stations, LSUB = reach length (m), and MAFSUB = the reach Mean Annual Flow (ML y-1).  

3.2. Implementation in the Moe River and uncertainty analysis 

Water and sediment modeling for the larger Latrobe River catchment and landscape datasets are described in 
Vigiak et al. (2011b). P modeling based on Vigiak et al. (2012) was informed by data collected in the 
catchment. Thayalakumaran et al. (2013) describe the estimation of HRU daily N loads. TNG, ΔG, TNS, and ΔS 
were estimated from 70 gully and streambank walls sampled in the catchment. The simulation period was 
1990-1996; it was chosen because during this period land use could be considered stationary (‘current’) and 
annual rainfall (1010 mm y-1) was close to long-term (1980-2000) average (940 mm y-1), hence 
representative for the area.   

Data for model calibration and uncertainty assessment consisted of monthly water discharge at the two 
gauging stations of the Moe River (stations 226209 and 226402 of the Victorian data Warehouse; DSE, 
2012), and monthly nutrient concentration sampling for the outlet station 226402. Uncertainty in monthly 
discharge was small because there was no gap in daily discharge data. Conversely, annual average loads of 
total suspended sediments (TSS), total Nitrogen (TN), and total Phosphorus (TP) for the simulation period 
were estimated with rating curves based on daily discharge, and therefore subject to larger uncertainty.  

Several uncertainty sources could affect model results including those attributable to imperfect knowledge 
and representation of processes; errors and simplifications in model structure; propagation of uncertainties in 
point-scale model inputs; spatial data; and catchment model parameters. Given the limited data available, 
uncertainty analysis focused only on catchment model parameters (Table 1) because (i) most of these 
parameters cannot be measured directly but are based solely on calibration; and (ii) their calibration may 
buffer uncertainties in other sources. 
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Figure 2. Posterior model parameter sets: histograms (on 
diagonal); scatter plots (upper-right); and parameter 

correlations (lower-left).   
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Model uncertainty was conditioned against available data using a Bayesian inference method implemented 
with the Flexible Model Environment (FME) package in R (Soetaert and Petzold, 2010). The FME 
uncertainty procedure consisted of four steps: 1) preliminary sensitivity analysis; 2) evaluation of the 
identifiability of parameters; 3) initial optimization of model simulations; and 4) Markov-Chain Monte Carlo 
(MCMC) simulation runs using the DRAM (Delayed Rejection Adaptive Metropolis) algorithm of the FME 
package. The sensitivity analysis allowed screening for the most sensitive parameters to bring forward in the 
analysis. The initial model parameters were set based on manual calibration and available measurements 
(Table 1). Given the pivotal role of discharge on model simulation, FME steps 1-3 were first applied to the 
four discharge parameters (F, VS, αq, αs; Table 1) against monthly discharge (2 time-series of 84 entries); 
then FME steps 1-4 were applied to all parameters against Mean Annual Flow (MAF), TSS, TN and TP load 
at the outlet. Finally, conditioned model parameter sets were used in Monte Carlo Simulations (MCS, set to 
500 runs) to propagate model uncertainty to land use scenario analysis. 

4. RESULTS AND DISCUSSION 

Monthly discharge was most sensitive to F and VS, followed by αq, while it was insensitive to αs in the 
plausible parameter range. While F was uncorrelated to the other parameters, VS was correlated to the two 
routing parameters αs and αq. Parameter collinearity indicated that all four parameters could be identified 
concurrently; however, given the insensitivity of αs, only F, VS, and αq were optimized, resulting in the 
initial dataset of: F = 1.06, VS= 0.74, αq = - 0.65.  

Model MAF, sediment and nutrient loads were most sensitive to F, SDR, zP and zN. These parameters 
regulate transfer of water, sediment and nutrient from HRU to subcatchments, and in-stream attenuation. 
Outputs were also sensitive to VS, αq, Δs, and b but to a lesser extent. Δs and b were highly correlated: they 
both regulated streambank erosion, a major source of sediment in the Moe River. Conversely, gully erosion 
or floodplain deposition parameters (ΔG, v and t) were insensitive; these were minor processes in the 
catchment. TNS and TNG were insensitive but correlated to zN. Collinearity analysis indicated that only four 
parameters could be concurrently identified with the available data; F, zP, zN, in combination with either SDR 
or b. Given that SDR regulated HRU upscaling of sediments, parameter b was dropped in favor of SDR.  

Table 1. Catchment model parameters used for the Moe River catchment uncertainty analysis. 

Parameter and function Model output Initial value Tested range 

F - Fraction of HRU excess water to discharge Discharge, TSS, TN and TP 1.2 1.1-1.3 

VS - Volume of discharge slow flow  Discharge, TSS, TN and TP 0.5 0.4-0.8 

αq - Quick flow routing Discharge, TSS, TN and TP -0.7 -0.6; -0.8 

αs - Slow flow routing Discharge, TSS, TN and TP -0.98 -0.97; -0.99 

SDR -Sediment delivery ratio of hillslope erosion TSS, TN and TP 0.05 0.02-0.1 

ΔG - Fraction of gully wall contributing to suspended 
sediment load 

TSS, TN and TP 0.44 0.4-0.5 

ΔS - Fraction of streambank wall contributing to 
suspended sediment load 

TSS, TN and TP 0.64 0.6-0.7 

b - Streambank erosion factor TSS, TN and TP 0.002 0.001-0.003 

v - Setting velocity of suspended sediment particles 
(m/s) 

TSS, TN and TP 0.0001 0.00001-0.001 

t - Recurrence time of overbank floods (year) TSS, TN and TP 2.5 2-3.5 

TPL - Total P content of gully/streambank walls 
(mg/kg) 

TP 450 400-600 

zP - in-stream attenuation of total P TP 4 2-6 

TNG - Total N content of gully walls (mg/kg) TN 2000 1800-2200 

TNG - Total N content of streambank walls (mg/kg) TN 1200 1000-1400 

zN - in-stream attenuation of total N TN 3 2-5 
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Figure 3. TN load (t/y) estimated for different scenarios with 
uncertainty: Current = current conditions; DI = intensive dairy 

system; DE = extensive dairy system; DA = advanced intensive 
dairy system; B = beef system. The boxplot indicates median 

output of 500 MCS (thick line), the interquartile range (limits of 
box), 1.5 the interquartile range (whiskers) and simulation 

outside these limits (circles). 
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Figure 2. Posterior model parameter sets: histograms (on 
diagonal); scatter plots (upper-right); and parameter 

correlations (lower-left).   
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Optimization of the model yielded the 
initial parameter set for MCMC 
simulation (F = 1.28, SDR = 0.077; zP = 
4.60; zN = 3.43) and the parameter 
variance-covariance matrix. Prior 
parameter distributions were set as 
uniform in large ranges (F = [0.95-1.45]; 
SDR = [0.04-0.12]; zP = [2.75-7]; and zN 
= [1.5-4.5]). MCMC DRAM runs were 
set to 5000, with delayed rejection of 2 
updating every 50 runs. There was no 
burn-in period because simulation started 
from an optimized initial set. In total, 
3431 MCMC simulations were accepted. 
Visual inspection of parameter traces 
indicated that convergence was 
achieved. The posterior 95% credible 
intervals were: F = [1.06-1.41]; SDR = 
[0.053 - 0.11]; zP = [3.46 - 5.91], and zN 
= [2.38 - 4.23]. Posterior distributions 
showed positive correlation between F 
and zP, and between F and zN (Figure 2). 
The application of the best posterior 
parameter set yielded about 440 t TN y-1, 
which was very close to the rating curve 
estimation (430 t TN y-1); TN sources 
largely coincided with areas dominated 
by dairy land use (Figure 1b).  

Propagation of model uncertainty to scenario predictions with MCS runs showed that intensity of grazing 
management had a significant impact on TN loads (Figure 3). Intensification of dairy industry (scenario DI) 
could triple current TN loads, up to about 1350 t TN y-1. Conversely, the more extensive systems (scenarios 
DE and B) could reduce current TN loads by about 70% (to 110-140 t TN y-1). The ‘advanced’ intensive 
system (DA) could achieve similar milk production as DI whilst increasing current TN loads by a more 
moderate 40%.  

Other sources of uncertainty, most 
notably uncertainties in point-scale 
model inputs and uncertainties in model 
structure, could also impact model 
predictions. A sensitivity analysis of 
DairyMod and HowLeaky 
(Thayalakumaran et al., 2013) 
highlighted several co-dependencies in 
point-scale inputs; for example, runoff 
and deep drainage volumes were 
negatively correlated, while N loss in 
leaching was positively correlated to 
drainage volume, and negatively 
correlated to N loss in runoff. 
Propagation of uncertainty of point-scale 
inputs to catchment-scale outputs would 
require a full characterization of these 
dependencies. Unfortunately, data 
availability was insufficient to even 
account for all catchment-scale 
parameters; for example, SDR and b 
parameters could not be concurrently 
identified; thus uncertainties between 
hillslope and streambank sources 
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remained un-assessed. However, as N losses from agricultural land accounted for more than 95% of TN load 
at the outlet, impact of this uncertainty is presumably small. Structural uncertainties (i.e. due to model 
specifications) may also be important, particularly the transfer of N loads in leaching to stream (eq. 3) and in-
stream attenuation (eq. 6), which does not account for reach physical conditions. The model assumes a 
monthly equilibrium between N concentration in subsurface flow and slow flow; this seems reasonable for 
the Moe River catchment, which is relatively small and well connected to the stream, but longer time lags 
should be expected in other environments. Eq. 6 quantifies ‘apparent’ rather than ‘real’ in-stream attenuation, 
i.e. it inherently corrects for errors in estimation of N load at the source. Such structural uncertainties can 
only be quantified (and reduced) by improving the knowledge of the system. Despite these limitations, the 
four most sensitive parameters (F, SDR, zP, and zN) could be successfully conditioned against available data. 
Because of their functions, these parameters are believed to include the most important sources of uncertainty 
in model outputs, buffering uncertainties in model inputs and structure.  

Notwithstanding the uncert-ainty in model parameters, grazing management intensity was identified as 
having a major impact on TN loads reaching the Moe River catchment outlet. Current trends toward 
intensification of dairy systems may thus lead to significant increase of environmental stress in the Gippsland 
Lakes. Innovative intensive systems may reduce potential trade-offs between agricultural income, milk 
production, and the environment, compared with conventional approaches to intensification (increased 
fertilizer use). However, even with such innovative approaches, N loads would still be 40% higher than 
current loads.  
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