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Abstract: Understanding weather and climate extremes is important for assessing, and adapting to, the 
potential impacts of climate change. The design of hydraulic structures such as dams, drainage and sewers, 
for instance, relies in part on accurate information regarding patterns of extreme rainfall occurring at various 
locations and at different durations. Deriving this kind of information is challenging from a statistical view-
point because a lot of information must be extracted from very little data.  

In this paper, we describe the use of a spatial Bayesian hierarchical model (BHM) for characterising rainfall 
extremes over a region of interest, using historical records of precipitation data from a network of rainfall 
stations. The rainfall extremes are assumed to have a generalised extreme value (GEV) distribution, with the 
shape, scale and location parameters representing the underlying variables of the BHM’s process layer. These 
parameters are modelled as a linear regression over spatial covariates (latitude and longitude) with additive 
spatially-correlated random process. This spatial process leads to more precise estimates of rainfall extremes 
at gauged locations, and also allows the inference of parameters at ungauged locations. Furthermore, it also 
mitigates the limitations imposed by short rainfall records in that it allows the model to “borrow strength” 
from neighbouring sites, thereby reducing the uncertainty at both gauged and ungauged locations. Making 
use of r-largest order statistics in the data layer further allows the integration of multiple yearly rainfall 
amounts instead of the annual maximum only.  

The proposed BHM uses a parametric representation that links the GEV scale parameter obtained for differ-
ent accumulation durations. This approach leads to two additional process parameters, and allows the use of 
pluviometer data accumulated over a range of durations, thereby also increasing the amount of data available 
for inference. A main advantage of the Bayesian approach is that measures of variability arise naturally from 
the framework. These uncertainty measures represent information of crucial importance for a subsequent use 
of the estimated quantities.  
 
We demonstrate this Bayesian approach using a dataset of pluviometer measurements recorded at 252 mete-
orological stations located on the Central Coast of New South Wales, Australia. For each station, the rainfall 
data is accumulated over 12 different durations ranging from 5 minutes to 72 hours, from which the two larg-
est annual maxima are selected. Exploratory analyses of this rainfall dataset are carried out for various pur-
poses, including: (i) basic quality control (removal of erroneous data values), and (ii ) to provide insight into 
the relevance of the model structure and associated assumptions. 

The proposed model is fitted using Markov chain Monte Carlo (MCMC) simulation, with several types of 
diagnostics plots used to assess the convergence properties of the resulting chains. We present numerical 
examples of estimated parameters resulting from the fitted model (regression coefficients, sill and range of 
the spatial correlation function) together with confidence intervals. Further results from this study are pro-
vided by calculating intensity–duration–frequency (IDF) curves for a few sites of interest (both gauged and 
ungauged) with associated estimates of uncertainty. These results are shown to be in good agreement with 
station-based maximum likelihood estimates, while achieving smoother curves with tighter uncertainty 
bands.  
 

Keywords: Pluviometer data, spatial statistical modelling, generalised extreme value distribution, Markov 
chain Monte Carlo, intensity–duration–frequency curve.  
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1. INTRODUCTION 

There is a general consensus that the occurrence, extent and intensity of extreme weather events (e.g., ex-
treme rainfall or temperature, storms, etc.) are increasing and will continue to do so in the foreseeable future 
because of anthropogenic climate change (IPCC, 2007). This trend is likely to lead to an increase in natural 
hazards such as heat waves, floods and wildfires, which will have a significant impact on population health, 
food production, insurance costs, and damage to infrastructure and ecosystems. The need for an accurate and 
comprehensive understanding, analysis and forecasting of weather extremes and their consequences is there-
fore unquestionable, and scientific research in this field has recently become a priority for major research 
institutions and governments. In Australia, for instance, the Australian Rainfall and Runoff guideline docu-
ment (Pilgrim, 1997), which provides widely used national guidance for the assessment of flood characteris-
tics across the continent, is being updated in light of climate change (www.arr.org.au). This type of informa-
tion is essential for risk-informed policy decisions and projects involving town planning, mining develop-
ments, flood warning and emergency management, operation of regulated river systems, and building of in-
frastructure such as roads, rail, airports, dams and stormwater systems. 

Regional frequency analysis (RFA) is often used to estimate rainfall intensity–duration–frequency (IDF) rela-
tionships (Hosking and Wallis, 2005), which represent important inputs into models for impacts assessment. 
However, it is not always straightforward in RFA to model spatial and temporal variability of rainfall ex-
tremes, nor is it straightforward to obtain uncertainty estimates for IDF curves. Alternatives to RFA include 
spatial models, copulas and max-stable processes (see, e.g., Davison et al., 2012). 

Because extreme events are, by definition, rare, analysis of climatic extremes is based on very small amounts 
of data. Adding to this challenge is the fact that extrapolation of the analysis (forecasting) is typically re-
quired for locations with no direct observations. However, extreme weather events can be seen as the result 
of a spatial process (Banerjee et al., 2004), with underlying climatic and topographic parameters varying 
smoothly over space and between neighbouring locations. Because it can lead to improved inference when 
using temporally and spatially sparse datasets, modelling this spatial correlation explicitly is desirable in any 
approach used to analyse such extreme events. Also, it is important for the inference framework to produce 
estimates of uncertainty, so as to provide meaningful inputs to subsequent processes relying on such analyses 
of weather extremes. These requirements call for the development of rigorous models that are both flexible 
and built upon strong statistical foundations. 

Bayesian hierarchical modelling represents an approach that can be used for the implementation of such a 
flexible framework, and it allows for the integration of multiple sources of uncertainty. Several recent studies 
make use of BHMs for the spatial modelling of extremes in various contexts (monitoring of hurricane winds, 
rainfall, wildfires, etc.) and various regions of the world (see, e.g., Davison et al., 2012, and references 
therein). In this work, we focus on the analysis of a dataset of pluviometer observations recorded near Syd-
ney, Australia, as described in Section 2. The basis for the BHM formulation is the Bayesian latent variable 
model (Schliep et al., 2010; Davison et al., 2012), which we review in Section 3 and subsequently extend to 
rainfall extremes at different durations. Section 4 provides an overview of some results obtained from the 
fitted model, such as parameter estimates and examples of IDF curves (at both gauged and ungauged loca-
tions), together with corresponding estimates of uncertainty. Finally, Section 5 concludes this paper with an 
overview of current limitations and future research directions. 

2. RAINFALL DATA AND EXPLORATORY ANALYSES 

The dataset of rainfall maxima used in this work was extracted from pluviometer records acquired at 252 
stations located around the Sydney and Wollongong metropolitan areas in New South Wales, Australia, as 
shown in Figure 1. The extent of the study area is roughly 160 km by 340 km. Station records consist of rain-
fall depths (in mm) registered over 5 min intervals, with different record lengths ranging from 7 to 41 years 
of measurements during the 1959 – 2002 period. The pluviometer data at 5 min intervals were subsequently 
accumulated over 12 different durations, namely 5, 10, 15 and 30 min, and 1, 2, 3, 6, 12, 24, 48 and 72 hours. 
The 12 resulting time series were then used to determine the two largest annual rainfall amounts for the cor-
responding station, year, and accumulation duration. Overall, the dataset contains a total of 3683 years of 
precipitation maxima (data points) distributed across the 252 weather stations. In Section 4, results are shown 
for two stations of interest, represented by blue circles in Figure 1: the top circle was selected due to its long 
record length (41 years) and the bottom circle was chosen due to its geographical proximity and similarity to 
an (arbitrarily selected) ungauged location (red square in Figure 1). 

A number of exploratory analyses were carried out prior to statistical modelling. We first calculated the 
maximum likelihood estimate (MLE) of generalised extreme value (GEV) distribution parameters (see Sec-
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tion 3) at each station, and then used them to inves-
tigate: (i) the dependence of these GEV parameters 
on various covariates (e.g., latitude and longitude); 
(ii ) the spatial correlation between GEV parameters 
of neighbouring stations; (iii ) the dependence be-
tween the GEV parameters and accumulation dura-
tion; and (iv) the correlation between rainfall 
maxima at various durations.  

The results from these analyses were used to: (i) 
gain insight into the potential relationships and cor-
relation among the model variables (GEV parame-
ters, covariates, etc.); (ii ) identify and then remove 
erroneous data values (perhaps resulting from tech-
nical and/or human errors); (iii ) provide MCMC 
starting values and prior information (see Section 
3.3); and (iv) validate some of the assumptions 
made in formulating the model (e.g., use of covari-
ates, definition of spatial processes and duration-
dependent relationships; see Sections 3.2 and 3.3). 

3. MODELLING RAINFALL EXTREMES 

3.1. Generalised extreme value theory 

The GEV distribution is often used to model rainfall 
extremes (Coles, 2001; Davison et al., 2012). Under 
certain conditions, the annual maximum rainfall Y 
of fixed duration can be approximated by a GEV 
distribution with location ),( +∞−∞∈µ , scale ,0>σ  and shape ),,( +∞−∞∈ξ  whose cumulative distribution 
function is given by: 
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where the notation )(iy  is used to denote the i-th largest rainfall amount: )()2()1( ryyy ≥≥≥ K  (associated 
observations of )()2()1( rYYY ≥≥≥ K ). 

3.2. Re-parameterisation 

Koutsoyiannis et al. (1998) re-parameterise the location parameter as σµµ =~  (sometimes called ‘disper-
sion’) and show that both µ~  and the shape parameter ξ  can be reasonably assumed to remain constant for 
extreme rainfall data accumulated over various durations. Our exploratory analyses indicate that the GEV 
parameters of most stations satisfy this condition. However, the scale parameter σ  depends on the accumu-
lation duration d and Koutsoyiannis et al. (1998) suggest using the following relationship to model this de-
pendence: 

( )
.ηθ

σσ
+
⋅=

d

d
d   (3) 

Again, exploratory investigations demonstrated that this relationship was adequate given the current dataset 
of precipitation extremes. This formulation links the scale parameter dσ  for pluviometer data accumulated 
over several durations. Consequently, in addition to the three standard GEV parameters ,~µ  σ  and ,ξ  this 

Figure 1. Study area showing the spatial locations of 
252 pluviometer stations (black/blue circles). The blue 
circles and red square (ungauged location) correspond 

to three sites of interest considered in Section 4. 
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formulation requires two additional parameters, a “duration offset” term θ  and a “duration exponent” term 
,η  which will also need to be estimated within the BHM. 

3.3. Spatial Bayesian hierarchical model 

In this work, we use the spatial model presented in Davison et al. (2012) as a basis for our hierarchical 
framework. We extend this Bayesian formulation with the re-parameterisation given in Section 3.2 to account 
for the 12=D  available accumulation durations, and by making use of Eq. (2) to allow for 2=r  largest 
extreme rainfall values. The Bayesian hierarchical framework consists of three levels, as described below. 

Data model. In this model, the precipitation maxima dtsY ,,  for weather station Ss ,,1 K=  (with )252=S , 
year ,,,1 sTt K=  and accumulation duration ,,,1 Dd K=  are assumed independent conditional on the GEV 
parameters. They are modelled as ),,,,~(GEV~,, sssssrdtsY ηθξσµ  with )(GEV ⋅r  denoting the r-largest GEV 
density given in Eq. (2), and using the relationship between the duration-dependent scale parameter ds,σ  and 
the station-specific variables ,sσ  sθ  and sη  given in Eq. (3). Note here that the rainfall record length sT  is 
allowed to vary across stations. As a result of the conditional independence assumption, the data likelihood 
can be written as: 

( ) ( )∏∏∏
= = =

=
S

s

T

t

D

d

sssssdtsr

s

p
1 1 1

,, ,,,,~;GEV,,,,~| ηθξσµyηθξσµY   (4) 

where Y  represents the dataset of all rainfall maxima, the vectors ηθξσµ and,,,~  contain the respective 
GEV parameters for each of the 252=S  stations, and with dts ,,y  denoting the vector of 2=r  largest pre-
cipitation maxima at station s  for year t  and accumulation duration .d  For conciseness, the station sub-
script s will be omitted in the following when referring to the GEV parameters, and the symbol 

},,,,~{ ηθξσµχ ∈  (respectively }),,,,~{ ηθξσµχ∈  will be used to denote any of the GEV parameters. 

Process model. Assuming that the GEV parameters vary smoothly over space, the model used in this work 
imposes a spatial process )(⋅P  on each of them, as follows: 

( ) ( )χχχχχ λα ,,lP+⋅= βXχ Th   (5) 

where )(⋅χh  is a nonlinear transformation for parameter ,χ  T
χX  is a matrix of χN  covariates for each sta-

tion, and χβ  is a vector of corresponding χN  regression coefficients. Since the right-hand side of Eq. (5) 
represents a real-valued vector, the function )(⋅χh  is used here to ensure that the GEV parameters remain 
within their respective range of values. For instance, using )log(σ  on the left-hand side of Eq. (5) leads to 
strictly positive values for ,σ  as per Section 3.1. Thus, we define )log()()( ⋅=⋅=⋅ θσ hh  and ),(logit)( ⋅=⋅ηh  
while no transformation is necessary for the dispersion and shape parameters, i.e., }.,~{for  )( ξµχχχ ∈=χh  

While there are indications that some GEV parameters might best be described as being constant over space 
(see, e.g., Koutsoyiannis et al., 1998; Davison et al., 2012, where ξ  is modelled as independent of lati-
tude/longitude), our implementation defines the term χχ βX ⋅T  for all GEV parameters as a regression over 
spatial coordinates with intercept (specifically, our implementation makes use of easting/northing coordinates 
in km). While this may not lead to the most parsimonious model definition, we essentially let the model itself 
converge to a state that ultimately indicates which of these regression coefficients are significant. Also, all 
covariates are first scaled to zero mean and unit variance prior to model simulation, so as to improve the in-
ference (Gelman and Hill, 2007). 

In Eq. (5), )(⋅P  represents a spatially correlated, zero-mean Gaussian random process (multivariate normal) 
with covariance matrix )(⋅χΣ  defined on the set of stations’ locations contained in the variable :l  

( ) ( ).),,(,MVN~,, χχχχχ λαλα ll Σ0P   (6) 

Here, we use the exponential family of correlation functions (Davison et al., 2012) to model the smoothness 
of the GEV parameters, leading to the following definition of the covariance matrix entries: 

[ ] ( ) ,,,2,1,,exp Sjijiij K=−−⋅= χχχ λα llΣ   (7) 

with χχ λα  and  the sill and range, respectively, of the covariance function, and il  denoting the spatial loca-
tion of the i-th station. With this formulation, the range parameter χλ  provides an indication of the distance 
beyond which the spatial correlation between values of a given GEV parameter χ  at different spatial loca-
tions drops to a negligible level.  
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Prior distributions. Finally, the Bayesian hierarchical framework requires prior information for the parame-
ters . and  , χχχ λαβ  In accordance with Davison et al. (2012), and to reduce computational requirements, we 
select conjugate Gamma, inverse Gamma and multivariate-normal priors as follows: 

( ) ( ) ( ),,MVN~,,InvGamma~,,Gamma~ 2
χχχχχχχχ ββχααχλλχ σγκαγκλ NN ×⋅Iµβ   (8) 

where κ  and γ  are the shape and scale hyper-parameters of the respective distributions, for which informa-
tive priors should be used according to Banerjee et al. (2004). In this work, we set these hyper-parameters to 
values such that the mean (or mode) of the respective prior distribution coincides with maximum likelihood 
estimates determined from the exploratory analyses, while setting the distributions’ variance so as to cover 
some reasonable range of values around that mean or mode. As for the χβ  priors, we set their means to zero 
and variances to some relatively large value to obtain uninformative priors. 

Bayesian inference. Using the data likelihood, process equations and prior densities defined in Eqs. (4), (5) 
and (8), the full conditional distributions for the model variables can be derived from the posterior density 

),|( YΩp  where Ω  is the set of all GEV parameters (for all 252 stations), their respective regression coeffi-
cients, as well as the sill and range parameters of their covariance functions (representing a total of 1285 pa-
rameters to estimate). The full conditionals are then used for inference of the model variables. This is carried 
out via Markov chain Monte Carlo (MCMC) simulation using standard Gibbs sampling for the χα  and χβ  
parameters (conjugate priors), while Metropolis–Hastings (MH) steps are necessary to sample the GEV pa-
rameters and χλ  variables. 

The results presented in Section 4 were obtained from MCMC chains simulated for a total of 150,000 itera-
tions, with the first 20,000 iterations discarded (burn-in) and subsequently thinned by a factor of 35 so as to 
achieve mostly uncorrelated chains. The step sizes used in the MH sampling steps were set so as to ensure an 
average acceptance rate between 20 and 30%, as per the “golden acceptance rate” for high-dimensional mod-
els (Robert and Casella, 2010). Several types of diagnostics plots were used to assess the convergence prop-
erties of the chains, and they indicated that the chains usually converge within the first 5000 MCMC itera-
tions. The model was found to be generally well-behaved, with no indication of identifiability issues, and it 
also remains essentially unaffected by a well-dispersed selection of the chains’ starting values. 

4. RESULTS 

Figure 2 illustrates a typical result obtained from MCMC fitting of the hierarchical model. It shows the histo-
gram of the MCMC chain (thinned and burn-in removed, resulting in a total of 3715 samples) for the range 
parameter θλ  of the duration offset term .θ  The blue line in this plot also shows the prior density selected 
for that parameter. This result is in contrast with previous literature on BHM for spatial extremes (Davison et 
al., 2012; Sang and Gelfand, 2010) which suggests that it is not possible to learn from the data simultane-
ously about the sill and range parameters. As shown in Figure 2, the data has clearly informed our model 
about ,θλ  whose marginal posterior distribution is visibly different from its prior. Similar results are ob-
tained for the range and sill parameters of all GEV variables. This may be because the dataset used in this 
work is spatially and temporally denser than in previous studies, and also because we combine rainfall ex-
tremes across many accumulation durations using 
the re-parameterisation of Section 3.2, thereby in-
creasing the amount of available information. 

Figure 2 further illustrates a major benefit from 
Bayesian modelling. Since samples are drawn from 
the entire posterior distribution, we can calculate not 
only point estimates such as the posterior mean, but 
also estimates of uncertainty. For example, the thick 
line at the bottom of the plot in Figure 2 shows the 
95% credible interval (CI) for ,θλ  calculated as the 
0.025 and 0.975 quantiles of the MCMC samples. 

The posterior means of various model parameters 
and their 95% CIs are provided in Table 1. As dis-
cussed in Section 3.3, the regression coefficients 
associated with easting and northing 1(β  and )2β  
do not appear to be significant for the duration-

 
Figure 2. Histogram of MCMC samples for parameter 

θλ  (posterior marginal distribution), with superim-
posed prior density (blue line). The black marker and 
thick line on the abscissa indicate the posterior sample 

mean and 95% CI extents, respectively. 
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related GEV parameters η  and .θ  Values for the range parameter λ  shown in Table 1 point to a moderate 
correlation distance for µ~  and ,σ  large correlation distances for θ  and ,η  and minimal spatial correlation 
for the shape parameter .ξ  These results are consistent with our exploratory analyses, especially for ,ξ  
whose sample variogram was found to be essentially flat for any distance between about 6 and 120 km. 

IDF curves are necessary inputs to impacts assessment, and they are computed as an extreme quantile of the 
(fitted) GEV distribution (Coles, 2001). The IDF curves in Figure 3 represent the precipitation intensity ex-
pected to be exceeded on average once in 100 years, for rainfall events recorded over various durations. In 
the left-hand plot, the black curve was obtained from the BHM-fitted GEV parameters at a station in Sydney 
(top blue circle in Figure 1). The red markers and associated error bars show the IDF curve and 95% confi-
dence intervals based on MLEs of the GEV parameters (i.e., not from the BHM) using only that station’s 41 
years of precipitation maxima. The BHM-based IDF curve lies within the MLE confidence interval, and it 
has a smaller uncertainty as the Bayesian inference draws on information from neighbouring stations. More-
over, it is a smoother curve due to the parametric relationship between scale and duration in Eq. (3).  

In the plot on the right-hand side of Figure 3, the red line shows the IDF curve obtained for an ungauged lo-
cation (red square in Figure 1), corresponding to the location of the town of Nowra on the South Coast of 
New South Wales. This was obtained by simulating from the spatial process to compute the posterior predic-
tive distribution of the GEV parameters at that ungauged location. This illustrates the ability of the spatial 
model to make inferences at locations where no observations are available. For comparison, the black line 
shows the IDF curve at a nearby gauged location (blue circle at the bottom of Figure 1). Due to the spatial 
proximity, these two IDF curves are very similar, with the uncertainty being higher for the ungauged loca-
tion, as would be expected at a location with no precipitation measurements. 

5. DISCUSSION AND CONCLUSIONS 

The results provided in this paper demonstrate that spatial Bayesian modelling is a powerful and flexible tool 
to investigate the characteristics of extreme weather events. Among others, the model described in this work 

 
Figure 3. IDF curves for 100-year return period. Left: BHM-based IDF curve with 95% CI (black) and dura-

tion-by-duration MLE estimates with 95% confidence intervals (red), at a gauged location in Sydney (top 
blue circle in Figure 1). Right: BHM-based IDF curves with 95% CI for an ungauged location (red) and 
nearby gauged location (black), shown as the red square and bottom blue circle in Figure 1, respectively. 

 

Table 1. Bayesian estimates of model variables: regression coefficients ,β  sill α  and range λ  for each 
GEV parameter. Posterior means are in bold font, with 95% CI limits given on either side. 

 0β  1β  (easting, km) 2β  (northing, km) α  λ  (km) 

µ~  2.71, 2.81, 2.92 -0.22, -0.14, -0.065 0.064, 0.11, 0.17 0.028, 0.04, 0.06 10.3, 16.22, 24.11 

σ  2.12, 2.19, 2.25 0.13, 0.19, 0.24 -0.12, -0.081, -0.041 0.015, 0.022, 0.031 9.52, 15.09, 23.24 

ξ  0.11, 0.12, 0.13 0.017, 0.031, 0.045 -0.027, -0.013, 0.00084 0.0049, 0.0063, 0.0082 0.29, 1.52, 2.9 

θ  -3.67, -2.89, -2.09 -0.12, 0.25, 0.62 -0.4, -0.058, 0.27 0.36, 0.51, 0.81 50.65, 75.61, 105.46 

η  0.42, 0.65, 0.86 -0.14, -0.025, 0.088 -0.041, 0.072, 0.18 0.037, 0.063, 0.11 34.51, 59.8, 98.35 
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allows: (i) integration of r-largest pluviometer maxima accumulated over various durations; (ii ) making the 
most of the limited amount of available observations, effectively pooling them together through the use of a 
spatial process (especially important for a stable estimate of the shape parameter );ξ  (iii ) drawing on the 
spatial model to make predictions at ungauged locations; and (iv) providing measures of uncertainty for all 
inferred quantities of interest. The model presented here has proved very robust and powerful in estimating a 
large number of variables (1285 parameters) from a relatively limited number of observations (3683 years of 
rainfall maxima). For instance, other authors (e.g., Cooley and Sain, 2010) make use of a penalisation term 
on ξ  in the likelihood formulation to restrict the range of values for that parameter to within -0.5 and 0.5, but 
this was not found to be necessary with our model. 

The BHM that we describe here incorporates several simplifications. For instance, the current formulation 
assumes that all GEV parameters are stationary over the time span of pluviometer records (1959 – 2002). 
Future developments of the model will consider the introduction of time-varying parameters within the 
framework. Also, considering the spatial and topographical characteristics of the current dataset (see Figure 
1), incorporating additional covariates such as elevation (height above sea level), distance to coastline and 
aspect (slope orientation) may provide additional information and improve the inference. As indicated by 
exploratory analyses, higher-order terms in the regressions could also improve the model fit of the existing 
covariates, and this will also be considered in future developments of this framework. 

The approach used in this work is useful for investigating the characteristics of extremes derived from fitted 
marginal distributions, such as return levels and IDF curves. However, because of the assumption of condi-
tional independence, it cannot be used to simulate realistic extreme rainfall surfaces (Sang and Gelfand, 
2010) for the purposes of calculating depth-area curves; extending the method to do so is the subject of cur-
rent research. Future research endeavours will also include: (i) combining precipitation maxima from both 
pluviometer and daily data (non-recording stations); (ii ) integrating climate drivers that may have an impact 
on future rainfall extremes; and (iii ) validating and comparing the BHM to other approaches. 
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