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Abstract:  Climate change over the last four decades has resulted in a significant decline in streamflow in
south-west Western Australia, and there is concern for the state of these streams under a future climate. In
order to estimate future streamflow, a major exercise was undertaken to simulate the flows under a range of
future climate projections. A suite of five rainfall—runoff models was calibrated against observed flow in
106 gauged catchments across the region. The results from weighted means of 31 ensembles, made up of all
of the linear additive combinations of the five models, were examined for their ability to reproduce the
measured streamflows. The mean of the daily runoff from the Sacramento and IHACRES models
consistently resulted in a better model fit than any other combination of the individual models and this
‘adopted model” was used to model the runoff under the climate projections. This combination produced the
best overall objective function, as determined by the model efficiency of Nash and Sutcliffe (1970) and
average bias of less than 2% limit.
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1. INTRODUCTION

Global warming resulting from increased atmospheric greenhouse enhancing gases has been attributed as the
cause for many environmental changes, such as bleached coral reefs, insect susceptibility and death of pine
forest in North America and increased severity of drought and frequency of forest fires. With increased
temperatures global rainfall is predicted to increase but in some areas already short of water there has been a
reduced rainfall which is projected to worsen in future (e.g., Abbaspour et al., 2009; Arnell, 1992; Arnell and
Reynard, 1996). Countries with Mediterranean type climate appear to have had the greatest reductions in
rainfall and consequent runoff generation and streamflow (Ragab and Prudhomme, 2002; D'Agostino et al.,
2010). The reduction in rainfall and streamflow has been especially severe in the south-west of Western
Australia where a 16% decline in rainfall since the mid-1970s has resulted in a 55% decline in streamflow to
water supply reservoirs (McFarlane et al, 2011; Silberstein et al, 2011; Charles et al, 2011). Thus, projections
by GCMs of further reductions in rainfall in the region have major implications for water resources planning.

To investigate the impact of future trends in rainfall on streamflow, we applied a selection of rainfall-runoff
models, forced with the downscaled projections of GCMs. Applying the assessment over the entire south-
west region of Western Australia (204 catchments with 106 gauged catchment areas in 34,000 km?) required
that the methodology for setup, operation and calibration over the domain was relatively simple, could be
automated, and was robust in catering for the variations in catchment characteristics and climate. Use of a
suite of models with different formulations improved the likelihood that the full range of simulated responses
would be covered. The calibration results for each catchment were assessed to decide which models and
calibration methods were to be used in the scenario simulations. This paper describes the process undertaken
to calibrate the models and select the best for use in the future runoff projections.

2. METHODOLOGY

2.1. Conceptual rainfall-runoff models

A set of simple conceptual rainfall-runoff models was selected based on the ability to automate the inputs of
rainfall and potential evaporation (PE), distributed across the catchments, and to automate the optimisation of
model parameters. To ensure as far as possible that results were not significantly influenced by the model
structure and calibration method, models tested had a range of conceptual structures and the same approach
for optimisation and testing was used for all models. Therefore the results projected for future scenarios were
deemed more a result of the forcing conditions, namely changes due to climate change, than to vagaries of
model structure (Silberstein et al., 2012; Silberstein et al., 2013).

The models tested were SIMHYD, with a Muskingum routing method (Chiew et al., 2002; Tan et al., 2005),
Sacramento (Burnash et al., 1973), SMAR with a groundwater component added (SMARG) (Kachroo, 1992;
Goswami et al., 2002), IHACRES (Jakeman et al., 1990; Littlewood et al., 1997), and AWBM (Boughton,
1996). The models and calibration optimisers were part of the Catchment Water Yield Estimation Tool
(CWYET), expressly built for the purpose (Vaze et al., 2011). The application of each model used distributed
climate inputs with runoff generation occurring in each cell across the catchment and summed at the
catchment outlet. The catchments were small enough that explicit flow routing was not required. There is no
regulation on flow in these rivers. Each cell within the model catchment uses the same parameter set. All
models were implemented to accept spatially distributed rainfall and PE input sequences, applied on a 0.05 x
0.05 (longitude x latitude) grid (approximately 4.5 km x 5.5 km grid cells at the latitude of the region, 31 -
32 S). The climate data were extracted from the SILO Data Drill (www.longpaddock.qld.gov.au/silo, Jeffrey
et al., 2001) and the future climate scenarios generated from these (Charles et al., 2010; Silberstein et al.,
2012), although these future scenarios are not discussed further in this paper. The potential evaporation
formulation used was the areal wet environment of Morton (1983).

2.2. Catchment selection

The models were calibrated on all flow data available from 1975 to 2007 from 106 gauged catchments
distributed throughout south-west Western Australia (WA) (Figure 1). This period was chosen because of the
rainfall reduction and change in flow regime in south-western Australian rivers mentioned above (McFarlane
et al.,, 2012; Silberstein et al., 2012). The catchments are almost all in water reservoir reserves, almost
entirely covered in native dry sclerophyll eucalyptus forest and mainly managed for water supply, timber
harvesting and natural conservation, although there is some mining followed by rehabilitation with natural
species. The stream gauging stations are managed by the Department of Water, WA, (DoW) who provided
all data and gave the quality assurance on the data set. Not all stations had continuous record through this
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period, but all had at least 10 years of good quality record after 1974 (average period 26 years). They also
had an area of at least 10 km® (average area 380 km”) and mean annual runoff across the catchments ranged
from 5 to nearly 350 mm with a median value of 112 mm and the runoff coefficient ranged from 1 to
30 percent (Figure 2). The runoff coefficient tends to be higher in the high rainfall areas in the middle and
southern part of the study region, but there is no systematic geographic trend, and no trend with catchment
size (Figure 2c¢).
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Figure 1. Locations of the stream gauges across south-west Western Australia used for this study.

(a) (b) (©)
‘k 04 0.4
L 4
- é&
S %
£ AR NP
8 s ¢ e o
©0.2 02 * s ’0
£ LR I 4 ".0 <
c &
E o * 00 50
0.1 01 1% 4% o
: * 00 % ¢ *
$e & o,
* v * ‘/’Q‘ PS
’: O ’0” *
0 T T T T 0 » * & 0‘
I I
0 20 40 60 80 100
Runoff coefficient Probability of exceedence (%) 10 100 1000

Catchment area (sq.km)
05 .1 15 2 3

Figure 2. (a) Runoff coefficient across the study area, (b) frequency distribution of runoff coefficient, and (c)
runoff coefficient plotted against catchment area

2.3. Model calibration

The automated CWYET framework used three optimisation algorithms, namely a genetic, a shuffle complex
evolution and a uniform random sampling algorithm, and each was followed with the Rosenbrock local
optimisation (Rosenbrock, 1960). The objective function used was the Nash and Sutcliffe (1970) modelling
efficiency (NSE) with a 5% limit on model bias. The bias defined as the average percentage difference in
yearly observed and modelled runoff. The NSE is influenced more strongly by high flows than low flows, but
this was not considered a major issue for this project as the emphasis was on determining overall water
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resources, most of which are carried by high flows. The models were all run with a 15 year ‘spin-up’ period
prior to the calibration data commencement. The five models were calibrated separately and then the process
of assessing the best ensemble was undertaken as a follow on process.

2.4. Selection of the model ensemble

There are an infinite number of options available to combine models into ensembles for catchment
simulation. In this instance, arithmetic averages were made of all 31 possible combinations of the models,
including the five models individually. While the calibration results indicated which models performed better
and worse, no presumption of the best combination model was made prior to testing all possible
combinations of the models, and unit weighting was given to all models in all combinations.

3. RESULTS

None of the models had a perfect fit to the observed data and the ensemble average approach was tested by
combining simple arithmetic averages of the daily flow computed by every combination of two, three, four
and all five models, and comparing these combined model averages against the observed sequences, and
NSE:s calculated for every combination (Table 1).

Table 1. Proportion of the 106 test catchments for which the NSE (Nash and Sutcliffe, 1970) met range criteria for
all 31 combinations of the five models

Nash-Sutcliffe  AWBM SIMHYD Sacramento SMARG IHACRES

1 2 3 4 5
NSE>0.8 24% 34% 74% 32% 54%
0.6<NSE<0.8 73% 48% 24% 49% 45%
0.4<NSE<0.6 4% 11% 0% 11% 1%
0<NSE<0.4 0% 4% 2% 2% 0%
NSE<0 0% 3% 1% 6% 0%
1&2 1&3 1&4 1&5 2&3 2&4 2&5 3&4 3&5 4&5
NSE>0.8 51% 69% 49% 54% 70% 51% 55% 65% 81% 60%
0.6<NSE<0.8 45% 30% 45% 45% 28% 37% 44% 30% 18% 36%
0.4<NSE<0.6 3% 1% 2% 1% 1% 8% 0% 2% 1% 1%
0<NSE<0.4 0% 0% 3% 0% 0% 3% 0% 1% 0% 1%
NSE<0 1% 0% 1% 0% 1% 2% 1% 2% 0% 2%
123 124 125 134 135 145 234 235 245 345
NSE>0.8 70% 52% 61% 68% 70% 62% 66% 76% 59% 75%
0.6<NSE<0.8 29% 42% 38% 28% 30% 34% 28% 23% 37% 22%
0.4<NSE<0.6 0% 5% 1% 3% 0% 3% 5% 0% 3% 3%
0<NSE=<0.4 1% 0% 0% 0% 0% 0% 0% 1% 0% 0%
NSE<0 0% 1% 0% 1% 0% 1% 1% 0% 1% 1%
1234 1235 1245 1345 2345 12345
NSE>0.8 67% 1% 61% 76% 73% 71%
0.6<NSE<0.8 31% 28% 36% 23% 26% 28%
0.4<NSE<0.6 1% 1% 2% 0% 0% 0%
0<NSE=<0.4 0% 0% 0% 0% 0% 0%
NSE<0 1% 0% 1% 1% 1% 1%

Clearly, the Sacramento model gives the best representation of the observed runoff, with 98% of catchments
having NSE greater than 0.6 and 74% greater than 0.8. Note rounding of percentages in some combinations
results in the total not being exactly 100%. IHACRES was clearly the second best performing of the
individual models, and it is not surprising that the best combination is the average of these two (3 & 5 in
Table 1) with 81% of catchments having NSE greater than 0.8 (Table 1 and Error! Reference source not
found.a).

However the selection of “best ensemble” or indeed “best model” is not necessarily trivial (Ajami et al.,
2004), as demonstrated in Error! Reference source not found.. While Sacramento had the best NSE in the
great majority of cases, and the selected ensemble the best NSE in all cases, its overall bias was slightly
greater than the AWBM/IHACRES ensemble (Error! Reference source not found.b). However, since the
Sacramento/IHACRES ensemble had median absolute bias of 1.2% and an average absolute bias of 1.6%,
and the average and median absolute bias for the AWBM/IHACRES ensemble were 1.5%, these are all good
results and small differences in bias are inconsequential.
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Figure 3. Frequency distribution of (a) Nash-Sutcliffe efficiency (NSE) and (b) model bias for the five models and
all 26 model combinations. The heavy dashed red line shows the best model combination for NSE on both plots
and the heavy cyan line shows the AWBM and IHACRES combination that had the least combined average and
median bias

4. DISCUSSION

The linear combination of Sacramento and IHACRES consistently performed better in terms of higher NSE,
than any of the other 25 combinations or the five individual models. This was consistent across the study area
even with a wide range of climate (annual rainfall ranging from 350 to 1250 mm) and geographies (Figure 4).
This is particularly interesting as these two models represent the two extremes in model complexity with
Sacramento having, arguably, the most physical representation of a catchment and 17 parameters, and
IHACRES the simplest in concept, with no explicit process representation, although more parameters than
AWBM and SIMHYD. Both are well credentialed with Sacramento used in many hydrological studies (over
500 citations in Google Scholar) and IHACRES (over 2,000 citations in Google Scholar) derived from time-
series analysis origins, with its structure in this application tailored to hydrological applications and has often
been found to give a good fit to data sets.

The approach tested here differed from that suggested by Viney et al. (2005) in which a model ensemble
result was calculated by weighting each model according to the degree with which each model reproduced
measured flows in the calibration data set. A weighting of zero (i.e. the model results were excluded) was
used for poorly performing models, and weighting of one for perfect models. Viney et al. (2005) tested
weighting according to the value of the maximised objective function, which in our case would be the NSE
(Nash and Sutcliffe, 1970) with a 5% bias restriction. This is only one of many objective functions that could
be used to assess model performance (Gupta et al., 2012). It gives a preferential weighting to higher flows,
which in this application is appropriate as the key aim of the project was to reproduce the total water
resources in streams and investigate the changes in these due to climate change. If the application had been,
for example, centred on changes to ecological water provisions, then alternative measures would be better. In
that case the NSE could be used on low flows or on number of no flow days (Demarty et al., 2004). We also
examined the NSE on daily flow duration curves, annual total flows, and wet season and dry season flows. It
was found that in almost all cases this combination remained the best performing.

There are some concerns about the combination of models into an ensemble and whether this is an
appropriate strategy for hydrological simulation. In the project undertaken we assert that it is indeed
appropriate as the aim was to develop a technique to give the best possible reproduction of the observed flow
sequence. Although not discussed here, we also undertook “split sample” tests, in which a subset of data was
used for calibration while the remainder was used to test the objective function. This process provides a
greater measure of the appropriateness of the model selection by testing on a new dataset. However, it does
not necessarily assist the practical aim of the project as it reduces the learning data set for the calibration.
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Computer simulation of natural systems is always prone to uncertainty. Despite good quality data, only some
of these uncertainties are measurable and can be accounted for. The ‘equifinality’ problem (Beven, 2006) in
modelling, due to different combinations of parameter values producing the same results, is hard to quantify
and, as for the study reported here, is not necessarily an operational problem if the focus is to reproduce an
integrated observed behaviour such as total flow. While the reliance on NSE with 5% bias limit in this
project produced a good result, the results may well be improved by examining in more detail the
components of the objective function score as discussed by Gupta et al (2009).
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Figure 4. Geographical distribution of (a) model bias and (b) Nash-Sutcliffe modelling efficiency

5. CONCLUSIONS

In this paper we assessed the performance of a set of conceptual rainfall-runoff models of varying
complexities, from the simplest, a time-series transfer function model, to a 17 parameter model that has some
level of process representation. The rationale was to limit modelled process complexity to the minimum
necessary, always ensuring the models were ‘fit for purpose’ and only as complicated as necessary while as
simple as possible. While the most detailed model (Sacramento) produced the best overall objective function,
the simplest (IHACRES) produced the second best, and the arithmetic average of these two resulted in the
overall best ensemble combination. However, the selection of ‘best model’ is not necessarily straight
forward, and is dependent on the application required. Appropriate combination of selection of objective
function, requirement for minimum absolute or average bias and simplicity, or otherwise, of model, by which
parsimony of parameter selection may be significant, all need to be considered in addressing any particular
modelling problem (Vaze et al., 2012).
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