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Abstract: Modelling of regulated river systems requires a combination of hydrological components, e.g. 
rainfall-runoff models, and components dealing with diversion and storage of water. The resulting models 
often include a large number of calibrated parameters and multiple prediction points. To reduce the 
dimension of the calibration problem, the modelling domain can be split into river reaches delimited by 
inflow and outflow gauging stations. When the model is used in predictive mode, e.g. climate change studies, 
uncertainty generated within the upstream reaches will propagate to downstream reaches and alter the 
predictions on the lower parts of the model. This study investigates the use of streamflow data to better 
constrain the calibration of river models. The study is based on the calibration of a river model for a set of six 
Australian catchments, as part of the Australian Water Resources Assessment (AWRA) framework 
developed jointly by CSIRO and the Bureau of Meteorology. The river model was calibrated sequentially 
from upstream to downstream reaches using three different scenarios. In the first scenario, the reaches are 
calibrated independently using gauged data as inflows to the reach. This option isolates the reaches and 
minimizes the propagation of uncertainty. However, it leads to sub-optimal parameters when the model is 
used in predictive mode with no flow data available. In the second scenario, the reach inflows were set to the 
simulations from upstream reaches. In the third scenario, the inflows are set to a weighted average between 
gauged inflow and upstream simulations. The model performance was finally assessed in predictive mode. 
The results from this study suggest that the use of observed inflows leads to a systematic improvement of the 
performance statistics compared to the use of other inflow data.  
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1. INTRODUCTION 

A river model combines rainfall and routing components that simulate natural hydrological processes with 
components representing the management of water diversion infrastructures (e.g. dams, canal intakes, pumps, 
etc.). River models form a special class of spatially explicit hydrological models developed for water 
resources planning and operational management eg., to assess the impact of water sharing rules amongst 
multiple users including the environment or to conduct water balance estimates of the fluxes and stores along 
the river system. The state and federal water agencies across Australia responsible for management of water 
resources within their jurisdictions use different models that are appropriate for their modeling needs (IQQM, 
see Simons et al., 1996; Vaze et al., 2011, REALM, see Diment, 1991, MSM and  BigMod, see MDBC, 
2002). The model presented in this paper is the river component of the Australian Water Resources 
Assessment system (Vaze et al., 2013) developed jointly by CSIRO and the Bureau of Meteorology as part of 
the Water Information Research and Development Alliance (WIRADA). The AWRA system is used by the 
Bureau for the production of the National Water Accounts (NWA) and the Australian Water Resources 
Assessment (AWRA) reports, which provides an overview of water fluxes and storages at the national scale. 
Both products implement the Water Balance Framework introduced by  Barratt (2008).  

Figure 1 shows a typical configuration for the river models investigated in this paper. The configuration 
includes multiple prediction points located at gauged sites along a river system. When the model is run from 
the headwaters (referred as run order 1 in Figure 1) to downstream residual reaches (referred as run order 2 
and 3 in Figure 1), there are principally two ways of dealing with streamflow data: 

• The most straightforward approach is 
to run the model without using 
streamflow data (e.g. the predicted 
flow P1 is equal to the upstream 
boundary conditions for the residual 
reach 2 in Figure 1). This approach is 
referred as “simulated inflows” in this 
paper. 

• A less common approach is to reset the 
flow at each gauging station with the 
observed flow data (e.g. the observed 
flow O1 is passed to the residual reach 
2). This approach is referred as 
“observed inflows” in this paper. 

 

Figure 1. Combining streamflow data and prediction in a 
multisite river model 

Most spatially explicit hydrological models presented in the scientific literature (e.g. Ajami et al., 2004) are 
run with simulated inflows for a simple reason: the use of observed inflows requires streamflow data, which 
are obviously no longer available when the model is run in predictive mode (e.g. prediction in ungauged 
basins, streamflow forecasting or climate change scenario). As a result, using observed inflows would 
probably not even been considered by most hydrologists. Two exceptions can be mentioned. First, the water 
accounting exercise undertaken by the Bureau of Meteorology provides retrospective water balance estimates 
over the past year. For this specific exercise, streamflow data are available and can be used as observed 
inflows in the model. The development of a model in this context was the main driver for considering 
observed inflows as a viable alternative (Lerat et al, 2011). Second, the calibration of a river model is always 
performed against historical streamflow records where long time series of flow data are available. In this 
case, even if the model is designed to run with simulated inflows, it can be calibrated with observed inflows, 
provided concurrent streamflow records exist at both ends of the reach.  

As a result, the main question investigated in this paper is the following: given a set of inflows chosen for a 
river model (predictive mode using simulated inflows or retrospective mode using observed inflows), which 
type of inflows should be used during the calibration phase? More specifically, in the case where the model is 
to be used in predictive mode (i.e. with simulated inflows), two contradicting arguments could be put 
forward: on one hand, it seems preferable to calibrate the model with simulated inflows in order to have a 
similar model set-up between the calibration and the run phase. On the other hand, simulated inflows 
introduce errors at each prediction point that can propagate down the river system and corrupt the calibration 
of parameters on downstream reaches. The question is investigated here by comparing the performance of 
river models calibrated with observed, simulated and combined inflows. Section 2.1 presents the AWRA-R 
river model that is used in this study. The application of the model to six catchments in Australia is presented 
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in Section 0 and model calibration using different approaches is described in Section 2.3. The results are 
presented in Section 3 and discussed and summarized in Section 4. 

2. METHOD 

2.1. Model 

For a given residual reach, the AWRA-R river model 
was run at the daily time step based on the following 
equation (Figure 2): 

Figure 2. Conceptual representation of a river reach 
within AWRA-R 

Qୢ/ୱ෣ = ൫Q୳/ୱ൯୰୭୳୲ + Q୰ + Qୱ − Qୢ + Q୮ − Qୣ− Qୟ − Q୤୮ + Q୤୮୰ 	− Q୥୵ 

Where, ܳௗ/௦෣ is the estimated flow at the downstream 
gauge, ܳ௨/௦ is concurrent flow at the upstream 
gauges (including gauged tributaries) following 
routing, ܳ௥	is the local runoff contribution, ܳ௦	is the 
contribution from any artificial storages including 
rainfall on storage area, evaporation from storage 
area and change in storage volume, ܳௗ	is the loss due 
to irrigation diversion, ܳ௣	and ܳ௘	are the fluxes to 
and from the river due to rainfall and evaporation, 
respectively, Qୟ is the flow diverted to anabranches,  ܳ௙௣is overbank flow to floodplain, ܳ௙௣௥	is return 
flow from floodplain, ܳ௚௪ is the flux from river to 
groundwater. 

The routed flow ൫Q୳/ୱ൯୰୭୳୲ was computed by applying a delay on the reach inflows followed by a 

Muskingum routing scheme. The runoff Qr was extracted from the gridded runs of the AWRA-L landscape 
model (version 1.5, Vaze et al., 2013). A linear scaling factor was applied to the raw runoff data in order to 
correct for local errors in the runoff grids (Lerat et al., 2012). As an alternative to AWRA-L, the GR4J 
rainfall-runoff model (Perrin et al., 2003) was used to generate the runoff inputs. The anabranch flow Qa was 
computed with a fixed linear partition between the branches. The floodplain model is detailed by Dutta et al. 
(2013). Finally, the groundwater loss was computed from the river flow with the Monod equation (Monod, 
1949) Qgw=a Q/(b+Q) with Q the river flow and a and b the two Monod parameters.  

When the model is applied to a residual reach using AWRA-L runoff, it has 25 calibrated parameters: three 
routing parameters, one runoff scaling factor, two floodplain parameters (see Dutta et al., 2013), two Monod 
parameters and 17 parameters for the AWRA-L model. The model applied on a residual reach with GR4J 
runoff has eleven parameters (including the four free parameters of GR4J).  

2.2. Data 

The AWRA-R river model is currently deployed across Australia to support the production of the NWA by 
the Bureau of Meteorology. In this paper, five catchments presented in Table 1 were selected to cover a broad 
range of hydro-climatic conditions encountered across Australia. Daily timeseries of climate and streamflow 
data were provided by the Bureau of Meteorology. 

2.3. Calibration approach 

All the calibration experiments investigated in this paper were performed using a grid sampling followed by a 
Nelder-Mead gradient descent algorithm (Nelder-Mead, 1965). The objective function used for the 
calibration was a combination of the mean square error applied to the root square transform of flow with the 
simulation bias as per the following equation (Coron et al., 2012): 

 F =෍ቈටQୢ/ୱ෣(i) − ටQୢ/ୱ(i)቉ଶ୧ ቆ 1 + ቤ∑ Qୢ/ୱ෣(i)୧ − ∑ Qୢ/ୱ(i)୧∑ Qୢ/ୱ(i)୧ ቤ			ቇ 

where, ܳௗ/௦(ଓ)෣  and ܳௗ/௦(݅)	 are the observed and simulated flows on day i, respectively. 

Diversion 
(irrigation)

Flow from upstream 
reach 1 (observed or simulated)

Reach rainfall
Reach evaporation

Downstream flow
(anabranch)

Flux to Groundwater (Monod Function)

Overbank flow to floodplain 
(flow threshold)

Ungauged runoff  (AWRA-L)

Node

Reach

Downstream flow
(Main stem outflow) 

Bifurcation point

Bifurcation point 
(linear relationship)

Return flow from floodplain

StorageReservoir rainfall
Reservoir evaporation

Change in stored volume

Flow from upstream 
reach 2 (observed or simulated)

Reach
Inflows
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Table 1. Characteristics of test catchments 

Catchment Number 
of 
reaches 

Total area 
(km2) 

Mean annual 
rainfall 
(mm/y) 

Mean 
annual PE 
(mm/y) 

Calibration 
period 

Validation 
period 

Namoi  28  39,800  633  610  70-92  93-2011  

Ovens  17  7,800  1000  770  70-92  93-2011  

Condamine-Balonne  33  136,600  510  500  70-92  93-2011  

Lachlan  38  85,500  460  440  70-92  93-2011  

Flinders  22  110,000  490  1860  70-92  80-90  

Gilbert  23  46,400  770  1870  70-92  80-90  

 

A split sample calibration was performed with calibration and validation periods shown in Table 1. Finally, 
the model calibration was repeated three times with (1) observed inflows, (2) simulated inflows and (3) an 
average of observed and simulated inflows. These three calibration experiments were performed with 
AWRA-L runoff and GR4J runoff, leading to a total of six calibrated parameter sets for each reach.  

3. RESULTS 

Model performance was assessed by computing the daily Nash-Sutcliffe efficiency (NSE), the daily NSE on 
log transform flow (NSELOG), the absolute bias and the daily variance ratio between the simulated and 
observed flow data. The last two statistics were selected based on the decomposition advocated by Gupta and 
Kling (2009). 

The distribution of the performance metrics computed over the validation period for the six calibration 
experiments are shown in Figure 3. The figure shows the results when the model is run in retrospective mode 
(with observed inflows, see plots 3.a to 3.d) and in predictive mode (with simulated inflows, see plots 3.e to 
3.h). The main messages from the results in the two figures can be summarized as: 

• When the model is run with observed inflows, Figure 3.a to 3.d suggests that a model calibrated with 
observed inflows performs better than one calibrated with simulated inflows for most statistics. For 
example, in Figure 3.a, the median absolute bias when the model is calibrated with observed inflows is 
0.18 against 0.21 when the model is calibrated with simulated inflows. Similarly, the median NSE 
shown in Figure 3.b is 0.72 with calibration using observed inflows against 0.64 for simulated inflows.  

• The variance ratio is the only statistic that does not follow this trend as can be seen in Figure 3.d. For 
example, the median ratio is -0.18 for a model calibrated with observed inflows (i.e. an underestimation 
of the observed variance by 18%) against -0.13 with simulated inflows. The variance of a highly 
skewed variable like streamflow is strongly influenced by the extremes. Consequently the result shown 
in Figure 3.d would suggest that high flows are better represented when the model is calibrated with 
simulated inflows.  

• When the model is run with simulated inflows, the performance statistics worsen significantly 
compared to the ones obtained with observed inflows as can be seen by comparing Figure 3.a to 3.d 
with Figure 3.e to 3.h. For example, the median absolute bias a models calibrated with observed inflows 
increases from 0.18 in Figure 3.a to 0.26 in Figure 3.e. This result was expected because the use of 
observed inflows eliminates the simulation errors that propagate from upstream to downstream reaches. 
It suggests that the errors introduced by observed streamflow data are of lower order of magnitude than 
the ones generated by the model. 

• Aside from the general lower level of performance shown in Figure 3.e to 3.h by comparison to Figure 
3.a to 3.d, the general trend between the calibration experiments remains similar. For example, in Figure 
3.f, the models calibrated with simulated inflows  exhibits a median NSE of 0.39 against 0.5 with 
observed infows. In other words, when the model was run with simulated inflows, a calibration using 
observed inflows performed better than one using simulated inflows. This result holds for bias (Figure 
3.e), high flows (Figure 3.f) and low flows (NSELOG shown in Figure 3.g). The very high flow regimes 
characterised by the variance ratio in Figure 3.h is again the exception with model calibration using 
simulated inflows performing better than ones using observed inflows. 
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Figure 3. Performance statistics over the validation period on residual reaches in retrospective mode 
(observed inflows, plots (a) to (e)) and predictive mode (observed inflows, plots (e) to (h)) for the six 
calibration experiments. Each plot shows the distribution of model performance calibrated with simulated 
inflows, combined inflows and observed inflows, and two rainfall-runoff models (AWRA-L and GR4J) to 
compute ungauged lateral inflows to the reach. 

• The use of GR4J rainfall-runoff model produces systematically better performance statistics than 
AWRA-L for all statistics presented in Figure 3. This result was expected because GR4J has more 
degrees of freedom (4 free parameters against one scaling factor for AWRA-L) to adjust to local runoff 
conditions. For example, the median NSE shown in Figure 3.f  is 0.5 when AWRA-L runoff is used 
against 0.65 with GR4J runoff. It is important to indicate that the version of AWRA-L used for this 
work (AWRA-L 1.5) has now been superseded by recent developments which are expected to bring the 
performance level closer to GR4J. However, in spite of these differences, the general trends described 
in the previous points remains valid for a river model using GR4J: the use of observed infows during 
calibration always produce better performance in validation mode, even when the model is run with 
simulated inflows. 

• The use of combined observed and simulated inflows produced performance statistics lying between the 
statistics obtained with configuration using observed and simulated inflows, respectively.  

Figure 3 presents an aggregated view of the results over the whole dataset. In Figure 4, the distribution of 
the performance statistics was split according to the run order of the reaches (e.g. headwater=1, immediately 
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downstream of headwater=2, etc…). The model was run over the validation period in predictive mode with 
the GR4J rainfall-runoff model.  Figure 4 can be commented as follows: 

• The model performance generally improves when moving away from headwaters up to run order 10. 
For example, the median NSE shown in Figure 4.b goes from 0.64 for run order 2, to 0.70 for run order 
3-4 and 0.79 for run order 4-9. However, all performance suddenly drop for run orders greater than 10, 
which suggests that the model can be improved in lower part of the system. 

• The trend observed in Figure 3 is confirmed in Figure 4: models calibrated with observed inflows 
performed better than models calibrated with simulated inflows. The trend is particularly clear for the 
low flow simulations, as can be seen by comparing Figure 4.c with Figure 4.f.  

 

Figure 4: Distribution of performance statistics from most upstream (reach order 2) to most downstream 
residual reaches (reach order 10 to 20). Statistics are computed over the validation period in predictive 

mode (simulated inflows) 

4. DISCUSSION AND CONCLUSION 

This paper clearly shows that the choice between a configuration using simulated inflows (propagation of 
flow predictions from one reach to another) and observed inflows (reset of inflows to observed flow data at 
each gauge) has a significant impact on the calibration of river model. The use of observed inflows during 
calibration produced superior performance, including when the model is run with simulated inflows over an 
independent validation period. These results suggest that the propagation of the simulation errors from one 
reach to another deteriorates the calibration of parameters for downstream areas of the model. 

The advantage provided by the use of observed inflows during calibration was confirmed when a different 
rainfall-runoff model was used and when performance was analysed at different locations of the river 
system. The performance gains were particularly significant for low flow simulations at the lower end of the 
river systems. 

A combination between observed and simulated inflows was tested but did not bring any performance 
improvement compared to the use of simulated inflows. However, the combination tested was based on a 
simple average between the observed and simulated inflows. More advanced combinations could be 
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considered with, for example, time varying weighting factors between the two variables. Eventually, the 
weighting scheme could be based on statistical modelling of the streamflow data (e.g. inverse weighting 
with data variance). 

In all the calibration methods presented in this paper, the river model was calibrated sequentially reach by 
reach from headwater to downstream reaches. Future work will explore alternative approach performing a 
simultaneous calibration on all prediction points (system calibration). As suggested by Micevski et al. 
(2011), this is expected to further constrain the model simulation and may help better identify the trade-off 
between spatial consistency, which is limited in the current approach, and model performance at a given 
prediction point. 

ACKNOWLEDGMENTS 

This work was funded by the WIRADA research alliance between the Bureau of Meteorology and the 
CSIRO and carried out in the CSIRO Water for a Healthy Country Flagship. The climate and streamflow data 
were provided by the Bureau of Meteorology. 

REFERENCES 

Ajami, N. K., Gupta H., Wagener T., Sorooshian S. (2004). Calibration of a semi-distributed hydrologic 
model for streamflow estimation along a river system. Journal of Hydrology, 298.1: 112-135. 

Barratt D.G. (2008) A Proposed National Water Balance Framework. Water Division, Bureau of 
Meteorology. 

Coron L., Andréassian V., Perrin P., Lerat J., Vaze J., Bourqui M. and Hendrickx F. (2012) Crash testing 
hydrological models in contrasted climate conditions: an experiment on 216 Australian catchments. Water 
Resources Research, 48, W05552. 

Diment, G.A. (1991). Wide use of a generalised headworks and resources model: REALM. Proceedings 
International Hydrology and Water Resources Symposium, Perth, Australia, Institution of Engineers, 
Australia, National Conference Publication, 91(22), 579–583. 

Dutta, D., J. Teng, J. Vaze, J. Hughes, J. Lerat, S. Marvanek (2013). Building Flood Inundation Modelling 
Capability in River System Models for Water Resources Planning and Accounting, In: Climate and land 
surface changes in hydrology, IAHS Red Book (ed by Boegh et al.), IAHS Publication, 205-212. 

Gupta, H. V., Kling, H. (2009) Decomposition of the mean squared error and NSE performance criteria: 
Implications for improving hydrological modelling. Journal of Hydrology, 377.1, 80-91. 

Lerat, J., Z. Paydar, Peña-Arancibia J., Dawes W. (2012). Development and evaluation of the AWRA-R 
model, CSIRO: Water for a Healthy Country National Research Flagship 
Micevski T., Lerat J., Kavetski D., Thyer M., Kuczera G. (2011). Exploring the utility of multi-response 
calibration in river system modelling. In International Congress on Modelling and Simulation (19th: 2011: 
Perth, Australia) MODSIM2011. 

Monod J (1949) The growth of bacterial cultures. Annual Reviews in Microbiology, 3, 371-394.  

Nelder J.A. and Mead R. (1965) A simplex method for function minimization. Computer Journal, 7, 308–
313.  

Perrin C., Michel C., Andréassian V. (2003). Improvement of a parsimonious model for streamflow 
simulation. Journal of Hydrology, 279.1: 275-289. 

Simons, M., Podger, G., and Cooke, R. (1996) IQQM–A hydrologic modelling tool for water resource and 
salinity management. Environmental Software, 11, 185 – 192. 

Vaze, J., Davidson, A., Teng, J., Podger, G. (2011). Impact of climate change on water availability in the 
Macquarie–Castlereagh river basin in Australia. Hydrological Processes, Vol 25, Issue 16, 2597–2612, 
DOI: 10.1002/hyp.8030. 

Vaze, J., Viney, N., Stenson, M., Renzullo, L., Van Dijk, A., Dutta, D., Crosbie, R., Lerat, J., Penton, D., 
Vleeshouwer, J., Peeters, L., Teng, J., Kim, S., Hughes, J., Dawes, W., Zhang, Y., Leighton, B., Perraud, 
JM., Joehnk, K., Yang, A., Wang, B., Frost, A., Elmahdi, A., Smith, A., Daamen, C (2013). The 
Australian Water Resource Assessment System (AWRA). Proceedings of the 20th International Congress 
on Modelling and Simulation (MODSIM2013), Adelaide, Australia, 1–6 December 2013. 

 

2484




