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Abstract: The Hawkesbury-Nepean River System (HNRS) is an icon of Australia’s largest city Sydney. 
Although there are a number of dams and in-stream structures throughout the river system, the HNRS is 
considered to be an unregulated river. Since European settlement, the HNRS has been used as a primary 
water source to meet the drinking water needs for over 80% of Sydney’s population. The fact that it is located 
in the peri-urban areas dictates that it receive pollutants from a number of sewage treatment plants, located 
within the catchment, and the storm water runoff from agricultural and urban lands. Sydney Catchment 
Authority regularly monitors the water quality of the HNRS which generates a large three dimensional 
(different sampling stations and different parameters over time) data set containing useful information on 
pollutant build up and washoff on/from this river system.  

In this study, factor analysis was used to identify the most significant water quality monitoring station(s). It 
was found that the three principal components explained more than 90% of the total variance in the data set. 
Moreover, this study showed that the dimensionality of the water quality parameters can be reduced to eight 
principal components which explained more than 70% of the total variance. Information obtained in this 
study can be used to design an optimal sampling strategy, which could reduce the number of sampling 
stations in the river system. However, further study is needed to confirm this initial finding.  
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 Figure 1. Hawkesbury-Nepean River  
 System (CFOC, 2013) 

 
 
 
 
 
 
 
 
 

1. INTRODUCTION 

Hawkesbury-Nepean River System (HNRS, shown in 
Figure 1) is the main source of fresh drinking water supply 
to more than 4.8 million people living in and around 
Sydney. The HNRS system is a combination of two major 
rivers (Figure 1), the Nepean River (155 km) and the 
Hawkesbury River (145 km) (Markich and Brown, 1998). 
The river system is complex in nature, the upper part 
contains poorly accessible gorges, the middle part is 
running through irrigated farm lands and the lower part has 
tidal slopes with deposited soil pockets (Diamond, 2004). 
The middle part of the river is being continuously 
influenced by increasing population growth, urbanization, 
industrialization and other human activities which cause 
contamination of the quality of the river water from 
different sources (e.g. sewage, stormwater, runoff from 
disused mines, toxic forms of blue-green algae, and waste 
from domestic and native animals). Pinto and Maheshwari 
(2011) have shown that river health in peri-urban 
landscapes is prone to higher degrees of degradation. 
Within the HNR catchment, vegetation clearance has been 
continuously practised over the last 200 years causing 
increased subsurface and agricultural runoff and sediment 
loads into the river system (Thomas et al. 2000). Land use 
in the HNR catchment includes regions that are heavily peri-urbanised and industrialised and which are 
important for recreational and agricultural activities and tourism (Baginska et al. 2003). Agricultural runoff 
contributes approximately 40 % to 50 % of phosphorus loads and 25 % of nitrate loads into the HNRS which 
are believed to have originated from agricultural and animal farms (Markich and Brown 1998). 
 
A regular water quality monitoring program generates reliable data which reflect the state of the water quality 
of a river. However, generating good data is not enough to meet the objectives of a water quality monitoring 
program. Data must be processed and presented in a manner that provides the understanding of the spatial 
and temporal patterns in water quality parameters. The intent is to use the collected set of data to explain the 
current state of the water more widely and make the necessary controls to overcome future water quality 
issues.  One of the problems with many sets of multivariate data generated from a monitoring program is that 
there are too many variables to analyse and then to draw meaningful conclusion from this.  
 
The multidimensionality (i.e. different sampling stations and different parameters over time) of data make 
analysis more complicated. Principal component analysis (PCA) and factor analysis (FA) are the two 
multivariate techniques with the central aim of reducing as much as possible of the laity of a multivariate data 
set while retaining their variation/useful information as much as possible. This objective is achieved by 
transforming the original variables to a new set of hypothetical variables called principal components or 
factors (PC/F) that are uncorrelated. They are obtained as a linear combination of the original variables. 
Principal components or factors explain the original variance in a monotonically decreasing way (Kovans et 
al., 2012). Factor analysis is similar to principal component analysis, but the two are not identical.  In FA, 
components extracted from PCA are rotated according to a mathematically established rule (i.e., varimax, 
equamax and quarimax) yielding easily interpretable new variables, called varifactors (VFs) (Pinto et al 
2013). FA use regression modeling techniques to test hypotheses producing error terms, while PCA is a 
descriptive statistical technique (Bartholomew et al., 2008). The difference between PCs obtained in PCA 
and VFs obtained in FA is that PCs are linear combinations of observable water quality parameters but VF 
are unobservable, hypothetical and latent variables (Alberto et al. 2001). 

The differences between PCA and FA are further illustrated by Suhr (2009) as follows: 

• PCA results in principal components that account for a maximal amount of variance for observed 
variables. FA account for common variance in the data. PCA inserts ones on the diagonals of the 
correlation matrix. FA adjusts the diagonals of the correlation matrix with the unique factors.  
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• PCA minimizes the sum of squared perpendicular distance to the component axis. FA estimates 
factors which influence responses on observed variables.  

• The component scores in PCA represent a linear combination of the observed variables weighted by 
eigenvectors. The observed variables in FA are linear combinations of the underlying and unique 
factors.  

In this study, PCA and FA both were applied to find out the most significant water quality monitoring 
stations in the HNRS. In addition, PCA was applied to find out the most significant water quality parameters 
in the HNRS. The StatistiXL software package was employed for the data analysis.  
 
 

2.   STUDY AREA AND DATA 

In this study, a total 28 physical, chemical and 
biological water quality parameters were considered 
in PCA and FA. These parameters were measured 
fortnightly by Sydney Catchment Authority at 15 
different water quality monitoring stations of the 
HNRS. Descriptions and locations of water quality 
monitoring stations are presented in Table 1 and 
Figure 2, respectively. The descriptive statistics of 
the water quality parameters are presented in Table 
2. 

 

 

 

 

 

 

Table 1. Water quality monitoring stations 

 

  

Site code Site 
E851 Shoalhaven River downstream of  Tallowa Dam 
N14 Hawkesbury River at Wisemans Ferry downstream of Car Ferry 
N21 Hawkesbury River at Lower Portland upstream of Colo River 
N35 Hawkesbury River at Wilberforce upstream of Cattai Creek 
N42 Hawkesbury River at  North Richmond upstream of North Richmond  Water Treatments Works 
N44 Nepean River at  Yarramundi Bridge upstream of Grose River 
N57 Nepean River at Penrith Weir upstream of Boundary Creek and Penrith  Sewage Treatment Plant 
N64 Nepean River 500m downstream of confluence of Warra river 
N641 Warragamba River (North Basin) downstream of Warragamba STP 
N67 Nepean River at Wallacia Bridge upstream of Warragamba River 
N75 Nepean River at Sharpes Weir downstream of Matahil Creek and Camden  Sewage Treatment Plant   
N85 Nepean River at Menangle Bridge 
N86 Nepean River at Pheasants Nest 
N881 Nepean River at downstream of Broughtons pass Weir 
N92 Nepean River at Maldon Weir upstream of Stonequarry Creek and Picton  Sewage Treatment Plant 

 

 
 
Figure 2. Map of water quality monitoring stations 
along Hawkesbury-Nepean River System (SCA, 
2001) 
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Table 3. Principal components with eigenvalues > 1 

Value PC 1 PC 2 PC 3 
Eigenvalue 11.96 1.328 0.993 
Percentage of Variance 79.731 8.855 6.62 
Cumulative Percentage 79.731 88.586 95.206 

 

Table 2. Descriptive statistics and abbreviations of the data set 

Water quality Parameter Abbreviation Units Min Max Median No. of data values 
pH  PH   5.78 9.94 7.63 1666 
Lorenzen  LOR ug/L 0.10 539.90 4.40 1666 
Iron Total TI mg/L 0.04 5.62 0.29 1666 
Phaeophytin PHA ug/L 0.10 25.20 0.80 1666 
Nitrogen TKN TKN mg/L 0.02 5.40 0.27 1666 
Temperature TEMP Deg C 8.10 30.60 19.50 1666 
Chlorophyll-a CHLA ug/L 0.20 253.10 5.10 1666 
E. coli ECOL orgs/100mL 0.00 6100.00 13.00 1666 
Iron Filtered  FI mg/L 0.01 3.43 0.09 1666 
True Colour TCOL   1.00 93.00 11.00 1666 
Nitrogen Total  TN mg/L 0.08 5.90 0.45 1666 
Turbidity TUR NTU -0.60 380.00 3.85 1666 
Alkalinity  ALK mgCaCO3/L 1.00 298.00 40.00 1666 
Aluminium Total  TA mg/L 0.01 3.97 0.08 1666 
Manganese Total TM mg/L 0.00 0.48 0.03 1666 
Dissolved Oxygen DO mg/L 1.50 16.20 9.10 1666 
Enterococci  ECOCC cfu/100mL 0.00 8400.00 20.00 1666 
Phosphorus Total TP mg/L 0.01 0.18 0.01 1666 
Suspended Solids SS mg/L 1.00 105.00 3.00 1666 
Nitrogen Oxidised NO mg/L 0.00 5.00 0.17 1666 
Aluminium Filtered  FA mg/L 0.00 0.45 0.01 1666 
Manganese Filtered  FM mg/L 0.00 0.35 0.01 1666 
Conductivity Field EC mS/cm 0.01 48.40 0.30 1666 
Nitrogen Ammonical NH-N mg/L 0.01 0.41 0.01 1666 
Phosphorus Filterable FP mg/L 0.00 0.11 0.01 1666 
Silicate Reactive RS SiO2 mg/L 0.01 14.90 1.71 1666 
Dissolved Organic Carbon DOC mg/L 0.20 350.00 4.60 1666 
UV Absorbing constituents  UV   0.01 0.93 0.12 1666 

 

3.   METHODOLOGY 

In this study, PCA was performed first to identify the most important water quality monitoring station(s) in  
the HNRS. For the purpose of this analysis, the median value of each parameter was used as the median is 
better suited for a skewed distribution to describe the central tendency of the data. In this analysis, stations 
with correlation coefficient greater than 0.9, were taken as principal water quality monitoring stations. 
Equations for principal components were derived by considering the loadings of the variables (water quality 
monitoring stations). 

To further identify the monitoring stations that are important in revealing surface water quality variations, a 
FA was employed. Varimax rotation was selected as the data rotation method, as it makes an orthogonal 
rotation of the factor axes to maximize the variance of the squared loadings of a factor on all the variables in 
a factor matrix which has the effect of differentiating the original variables by extracted factor. Each factor 
has either large or small loadings of any particular variable. A varimax solution was used to identify each 
variable with a single factor. This is the most common rotation option used in the PCA and PF analysis. 
However, the orthogonality (i.e., independence) of factors is often an unrealistic assumption (Russell, 2002). 
In the second step, PCA was performed on water quality data to identify the principal components that 
explain the most of the variance in the water quality data set.  

 
4.   RESULTS AND DISCUSSION 

When 15 monitoring stations were 
reduced to three principal 
components, it explained 95.2% of 
the total variance and the rest of the 
12 components only accounted for 
4.8% (Table 3). Further, the first, 
second and third components accounted for about 79.6%, 8.8% and 6.6% of the total variance in the data set, 
respectively. Therefore the discussion is focused only on the first three principal components.   
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The first component had almost equal loadings on all 
variables (Table 4) and therefore was a measure of 
overall performance of the stations and also it showed 
an extremely high correlation with the measured data. 
It accounted for 79.7% of the data variance (Table 3). 
Similarly, the second and third components had 
different loadings on different variables. Hence, PC2 
and PC3 represented a difference among the stations. 
Loading reflected only the relative importance of a 
variable within a component, and did not reflect the 
importance of the component itself (Davis, 1986). 

The results of the first PCA identified three important 
components that accounted for 95.2% of the variance 
in the dataset.  

 

Table 5 demonstrates the rotated factor correlation 
coefficient (obtained from FA) for 15 water quality 
monitoring stations. In this study, the factor 
correlation coefficient was considered to be 
significant if the value was greater than 0.7. This 
conservative criterion was selected because the 
study area was large and the river system was 
deemed to be highly non-linear and dynamic. From 
Table 5 water quality monitoring stations N14, 
N64, N641, N67, N75, N85, N86, N881, N92, N57 
and N21 have coefficient values greater than 0.70, 
and hence these are considered to be the most 
important water quality monitoring stations. 

 

PCA for the water quality parameters dataset developed eight principal components with eigenvalues > 1 
explaining about 72.7% of the total variance in the data set. The first PC accounts for 24.1% of the total 
variance which was highly correlated (loading > 0.7) with total iron (TI), true color (TCOL), turbidity, 
aluminum total, and UV absorbent. Whereas, the other seven PCs, although accounted for 12.7%, 8.3%, 
7.3%, 6.6%, 5.2%, 4.4% and 3.8%, respectively, correlated (loading > 0.7) with none of the parameters 
(Table 6 and Table 7). 

Principal components extracted for water quality parameters did not have a strong correlation when 
comparing with principal components extracted for water quality monitoring stations. Monitoring stations are 
primarily controlled by hydrological conditions, while water quality parameters are controlled by a 
combination of hydrological, chemical, physical and biological conditions, so it is expected that the 
monitoring stations would have higher correlation than the water quality parameters.  

 

Table 6. Explained variance and eigenvalues (for water parameters) 

Value PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 
Eigenvalue 6.756 3.559 2.343 2.067 1.851 1.460 1.243 1.073 
Percentage of variance 24.130 12.712 8.366 7.383 6.612 5.215 4.441 3.832 
Cumulative percentage 24.130 36.842 45.209 52.591 59.203 64.419 68.859 72.691 

 

  

       Table 4. Component score coefficients for  
       first three PCs (for monitoring stations) 

Variable PC 1 PC 2 PC 3 
E851 0.218 0.316 -0.386 
N14 0.265 -0.221 -0.176 
N21 0.243 -0.116 -0.338 
N35 0.272 -0.081 0.098 
N42 0.287 0.09 0.03 
N44 0.249 0.094 0.489 
N57 0.229 0.145 0.572 
N64 0.279 -0.106 -0.197 
N641 0.284 -0.031 -0.061 
N67 0.278 -0.17 0.15 
N75 0.274 -0.261 0.022 
N85 0.284 -0.073 0.076 
N86 0.234 0.489 0.006 
N881 0.21 0.547 -0.207 
N92 0.251 -0.374 -0.119 

    Table 5. Varimax rotated factor loadings for first 5 factors  

Variable 
Factor 
1 

Factor 
2 

Factor 
3 

Factor 
4 

Factor 
5 

E851 0.378 0.672 0.125 -0.19 0.594 
N14 0.766 0.265 0.27 -0.452 0.081 
N21 0.582 0.339 0.147 -0.717 0.098 
N35 0.555 0.267 0.566 -0.524 0.118 
N42 0.621 0.536 0.498 -0.266 0.07 
N44 0.404 0.303 0.85 -0.128 0.058 
N57 0.293 0.288 0.904 -0.099 0.033 
N64 0.818 0.432 0.248 -0.27 0.094 
N641 0.768 0.473 0.373 -0.185 0.07 
N67 0.776 0.244 0.537 -0.174 0.082 
N75 0.842 0.189 0.424 -0.244 0.116 
N85 0.749 0.368 0.498 -0.175 0.11 
N86 0.261 0.846 0.43 -0.12 0.037 
N881 0.195 0.926 0.238 -0.184 0.074 
N92 0.946 0.119 0.227 -0.16 0.111 
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Table 7. Component loadings for first eight PCs (water quality parameters) 

Variable PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 
PH -0.404 0.450 -0.092 0.065 -0.148 -0.036 0.351 -0.464 
LOR 0.052 0.402 0.080 -0.599 0.517 0.092 0.207 -0.112 
TI 0.907 -0.133 0.080 -0.078 -0.007 0.179 -0.016 -0.030 
PHA 0.124 0.378 0.032 -0.295 0.045 0.081 -0.186 0.202 
TKN 0.322 0.515 -0.239 -0.102 -0.038 -0.218 0.081 0.042 
TEMP 0.059 0.168 0.487 -0.315 -0.260 -0.629 0.089 0.019 
CHLA 0.085 0.507 0.080 -0.630 0.502 0.089 0.141 -0.059 
ECOL 0.459 0.169 0.250 0.324 -0.167 0.170 0.426 0.183 
FI 0.504 -0.554 -0.220 -0.236 -0.011 0.050 0.059 -0.161 
TCOL 0.754 -0.342 -0.207 -0.016 0.195 -0.296 0.061 -0.134 
TN 0.172 0.618 -0.665 -0.017 -0.110 -0.063 -0.073 0.250 
TUR 0.748 0.294 0.288 0.203 0.013 0.205 0.101 0.055 
ALK -0.236 0.482 -0.157 -0.003 -0.424 -0.122 0.143 -0.448 
TA 0.802 0.220 0.170 0.272 0.138 0.052 -0.080 -0.064 
TM 0.553 -0.207 0.038 -0.535 -0.383 0.264 0.017 0.017 
DO -0.243 -0.042 -0.491 0.258 0.380 0.530 0.134 -0.213 
ECOCC 0.450 0.201 0.225 0.328 -0.188 0.156 0.504 0.180 
TP 0.700 0.428 0.063 0.107 0.066 -0.025 -0.166 -0.087 
SS 0.605 0.409 0.361 0.033 0.076 0.220 -0.295 -0.069 
NO 0.061 0.510 -0.694 0.026 -0.117 0.022 -0.123 0.283 
FA 0.487 -0.288 -0.198 0.208 0.332 -0.232 0.008 -0.254 
FM 0.486 -0.430 -0.171 -0.415 -0.405 0.287 0.096 -0.027 
EC -0.046 0.116 0.305 0.046 -0.127 0.193 -0.554 -0.219 
NH-N 0.498 -0.038 -0.345 -0.222 -0.477 0.044 -0.059 -0.144 
FP 0.527 0.395 -0.082 0.275 -0.110 -0.132 -0.213 -0.259 
RS 0.570 -0.352 -0.272 0.106 0.165 -0.202 -0.033 0.079 
DOC 0.117 0.039 -0.041 -0.014 0.092 -0.170 0.004 0.266 
UV 0.742 -0.155 -0.122 0.010 0.211 -0.303 0.096 -0.036 

 

4.   CONCLUSION 

Water-quality monitoring programs generate complex multidimensional data. Multivariate statistical 
techniques can be used to extract useful information from this data. In this case study, factor analysis was 
performed to identify the most significant water quality monitoring stations in the Hawkesbury-Nepean River 
System. The stations N14, N64, N641, N67, N75, N85, N86, N881, N92, N57 and N21were found to be the 
most significant sampling sites explaining the most variation in the water quality data in the Hawkesbury-
Nepean River System. This result might be used to reduce the number of sampling sites in the river system. 
Principal component analysis allowed deriving three principal components which explained more than 90% 
of the total variance in data set. The findings of this preliminary data analysis need further confirmation by a 
more in-depth analysis, which is being undertaken.   
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