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Abstract: Accurate and reliable quantification of uncertainty in hydrological models promises to make 
real-time streamflow predictions both more accurate and more useful. One simple but effective approach to 
quantifying hydrological uncertainty is to apply an error model to streamflow simulations. An error model 
collates errors from all sources into prediction errors and builds up a statistical model of the error time series. 
Streamflows are often highly auto-correlated, and updating real-time hydrological error models with 
information from recent observations is an obvious means to improving the accuracy of the predictions. We 
attempt to include an error updating component in a two-stage error model. In Stage 1, we use a logarithmic 
hyperbolic sine transform to normalise both simulated and observed time series and stabilize variance. A 
bias-correction component is introduced to correct the bias of transformed simulations. In Stage 2, we apply 
an error updating procedure to the simulations obtained from Stage 1 by using the information from the 
previous time step. The error updating is based on the auto-correlation of hydrological errors. All model 
parameters in both stages are assumed to be seasonally dependent, because hydrological models often 
perform differently for different seasons. The residual term from both stages are assumed to be Gaussian. 
Stage 1 only uses the information from the present time step and can be applied without Stage 2, while Stage 
2 relies on Stage 1 and requires information from the previous time step. 

We test the error model on hydrological simulations of four catchments generated with a conceptual daily 
rainfall-runoff model. In isolation, Stage 1 leads to similar or marginally more accurate predictions than the 
original hydrological simulations. The Stage 1 uncertainty estimation is generally reliable. Applying the error 
updating model (Stage 2) markedly improves the accuracy of Stage 1 simulations. However, we show that 
the uncertainty in the Stage 2 simulations is no longer reliably quantified after the error updating is applied. 
This is associated with our assumption that the residual term is Gaussian. After applying the error updating, 
most residuals in the error model are significantly reduced, while a few residuals remain. This causes the 
distribution of residuals to have a longer tail than a Gaussian distribution.  

The two-stage estimation of hydrological prediction uncertainty is shown to be simple but effective. The 
prediction accuracy is progressively improved after bias correction in the transform domain (Stage 1) and 
error updating in original domain (Stage 2). However, it remains challenging to offer reliable uncertainty 
estimation after including error updating. We recommend replacing the Gaussian distribution with more 
sophisticated distributions in the error model.  
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1. INTRODUCTION 

Accurate and reliable quantification of uncertainty in hydrological models promises to make real-time 
streamflow predictions both more accurate and more useful. Various approaches based on full Bayesian 
modeling have been introduced to estimate the hydrological uncertainty. For example, Generalized 
Likelihood Uncertainty Estimation (GLUE) (e.g. Beven and Binley, 1992; Freer et al., 1996) aggregates all 
sources of error to parameter uncertainty and derives the predictive uncertainty based on the posterior 
distribution of parameters. Full Bayesian modeling requires implementing the Markov chain Monte Carlo 
(MCMC) algorithm (e.g. Kavetski et al., 2006; Kuczera et al., 2006). A simpler, but still effective approach 
to quantifying hydrological uncertainty is to apply an error model to streamflow simulations. Unlike GLUE, 
which transforms prediction uncertainty to parameter uncertainty, an error model lumps all errors into 
prediction errors and explicitly establishes a statistical model for prediction errors. 

We establish error models to describe the prediction errors. There are three key components in the error 
models we describe here: 1) transforming streamflow data, 2) correlation structure and 3) variance structure. 
Transformations such as the Box-Cox transform and the logarithmic hyperbolic sine transform (hereafter log-
sinh) (e.g. Thiemann et al., 2001; Wang et al., 2012) are generally carried out in order to normalize the data 
and stabilize variance. A time-series model is commonly used to represent the temporal relationship within 
prediction errors. Variance structure is assumed to be either homoscedastic (constant variance) (e.g. Diskin 
and Simon, 1977) or heteroscedastic (time-varying variance) (e.g. Schoups and Vrugt, 2010).  

Li et al. (2013) tested several error models for monthly streamflow predictions. They identified the presence 
of seasonal dependence in prediction error of monthly streamflow forecasts and recommended the use of 
seasonally dependent error model parameters. Further, they found that a seasonally variant error model based 
on autocorrelation in errors produced accurate and reliable monthly error estimates. Monthly flows often vary 
less and have different autocorrelation than daily flows, and it is not clear that the same model would perform 
equally well at the daily time step. Here we present a two-stage error model based on Li et al.’s (2013) 
seasonally variant error model for estimating errors in predictions of daily streamflow. 

2. TWO-STAGE UNCERTAINTY ESTIMATION 

We denote the actual and simulated streamflow from a hydrological model at a given day t  by tQ  and ,S tQ , 

respectively. A log-sinh transform (Wang et al., 2012)  

( ) 1 log(sinh( ))Z Q b a bQ−= +         (1) 

is applied to normalize data and stabilize variance. Wang et al. (2012) showed this transform describes 
hydrological data better than the more commonly used Box-Cox transform. To account for seasonal 
differences in daily streamflow distributions, we use different transform parameters for different months. We 
denote the log-sinh transform for month i by iZ  and the inverse log-sinh transform by 1

iZ − .  

We use a two-stage error model to estimate the prediction uncertainty and attempt to reduce the prediction 
error progressively. The error model in Stage 1 explicitly accounts for the prediction bias: 

( ) ( )( ) ( ) ( ) , ( )i t t i t i t S t i t tZ Q Z Qμ σ ε= + +        (2) 

where ( )i t  denotes the calendar month of day t  and tε  is assumed to independently follow a standard 

Gaussian distribution. The error model parameters μ  and σ  represent the prediction bias in the transform 

domain and the standard deviation of model residuals, respectively, in Stage 1. For a given month, there are 4 
unknown parameters, including two transform parameters and two error model parameters. Forty-eight 
parameters are estimated in Stage 1.  

The error model in Stage 2 is based on the Stage 1 bias-corrected streamflow simulations and uses the 
information from the previous day for error updating, as follows: 

( ) ( )( )* *
( ) ( ) , ( ) 1 , 1 ( )i t t i t S t i t t S t i t tZ Q Z Q Q Qρ τ ε− −= + − +       (3) 

where ( )( )( )* 1
, ( ) ( ) ( ) ,max ,0S t i t i t i t s tQ Z Z Qμ−= +  is the prediction mean made from Stage 1 and tε  is also 

assumed to independently and identically follow a standard Gaussian distribution. The error model 
parameters ρ  and τ  represent the auto-correlation of prediction errors in the original domain and the 
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standard deviation of model residuals in Stage 2. Stage 2 uses the transformation parameters estimated in 
Stage 1.  Twenty-four parameters are estimated in Stage 2 (2 parameters for a given month).  

Stage 1 aims to correct the bias of hydrological simulation and assumes that such bias is constant for a given 
month. No other information other than the hydrological simulation at the present time is needed. The error 
model in Stage 1 can be used in isolation and is particularly useful when streamflow observations at the 
previous time step are not available. Stage 2 is based on the bias-corrected simulation from Stage 1 and 
further utilizes the information from the previous day in error updating. The error updating is essentially 
performed in the original domain in order to prevent potential irregular outliers caused by the back-transform.  

The error models in both stages are estimated by the maximum likelihood estimation (MLE). MLE provides 
a point estimation of model parameters that maximizes the likelihood function (conditional probability of tQ
). Explicitly, MLE finds the model parameter that maximizes  

Stage1: ,
1

( | )
T

t S t
t

P Q Q
=

∏ ,         (4) 

Stage2: * *
, , 1

1

( | , , )
T

t S t t S t
t

P Q Q Q Q −
=

∏ .        (5) 

We derive the likelihood at each stage as follows: 

Stage1: ( ) ( )( )( )1
, ( ) ( ) ( ) ( ) ,( | )t S t z Q i t i t t i t i t S tP Q Q J Z Q Z Qφ ε μ−

→= − − ,    (6) 

Stage2: ( ) ( )( )( )( )* * 1 * *
, , 1 ( ) ( ) ( ) , ( ) 1 , 1( | , , )t S t t S t z Q i t i t t i t S t i t t S tP Q Q Q Q J Z Q Z Q Q Qφ τ ρ−

− → − −= − + − ,  (7) 

where ( ) 1

( ) ( )tanh( )z Q i t i t tJ a b Q
−

→ = +  is the Jacobian determinant of the log-sinh transform and φ  is the 

probability density function of a standard normal distribution. We apply the zero flow treatment introduced 
by Wang and Robertson (2011) and consider zero flows as censored data with unknown value less than or 
equal to zero. The likelihood function is revised below when zero flows occur: 

Stage1: ( ) ( )( )( )1
, ( ) ( ) ( ) ( ) ,( 0 | ) | 0t S t i t i t t i t i t S t tP Q Q Z Q Z Q Qε μ−= = Φ − − = ,   (8) 

Stage2: ( ) ( )( )( )( )* * 1 * *
, , 1 ( ) ( ) ( ) , ( ) 1 , 1( 0 | , , ) | 0t S t t S t i t i t t i t S t i t t S t tP Q Q Q Q Z Q Z Q Q Q Qτ ρ−

− − −= = Φ − + − = . (9) 

Two evaluation statistics are used to quantify the accuracy of the prediction at each stage. The Nash-Sutcliffe 
efficiency (NSE) (Nash and Sutcliffe, 1970) is used to assess the accuracy of the prediction mean: 

( ) ( )22

,1 1
1

T T

m t t tt t
NSE Q Q Q Q

= =
= − − −  ,      (10) 

where ,m tQ  is the prediction mean and Q  is the average streamflow. A greater value of NSE indicates a 

better prediction. The continuous ranked probability score (CRPS) (Gneiting et al., 2005) is used to evaluate 
the accuracy of prediction probability distributions: 

( )21

1
( ) ( )

T

t tt
CRPS T F x I x Q dx−

=
= − ≥  , 

where tF  is the cumulative probability distribution of streamflow prediction at t . A highly useful 

characteristic of the CRPS is that it collapses to the mean average error for deterministic forecasts, allowing 
comparison between deterministic and ensemble forecasts. Smaller values of CRPS indicate a more accurate 
prediction. The raw hydrological simulation (which is a single value) does not provide any information about 
uncertainty. Therefore, we do not apply the CRPS to the raw hydrological simulation. We use a quantile-
quantile (Q-Q) plot to compare the distribution of the simulated prediction residual with a standard normal 
distribution. If most points in a Q-Q plot align with a straight line, the test prediction is reliable.  
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3. CASE STUDY 

We simulate daily streamflow by the GR4J model 
(Perrin et al., 2003) and apply the two-stage uncertainty 
estimation to four catchments in Southeast Australian 
(Figure 1), from a range of climatic and hydrological 
conditions (Table 1). GR4J is a 4-parameter unit 
hydrograph model that simulates daily streamflows 
from daily rainfall and potential evaporation (PE). Daily 
rainfall and PE are aggregated to catchment areas from 
the Australian water availability project (AWAP) 
gridded dataset (Jones et al., 2009). We use data from 
1980 to 2004 for all catchments. Missing streamflow 
data occur in all catchments (Table 1). As a small 
fraction of data is missing, we simply omit the missing 
data from calculating the likelihood function.  

We calibrate GR4J with the Shuffled Complex 
Evolution (SCE) algorithm (Duan et al., 1994), using 
NSE as the objective function. The data from the first 
year (i.e. 1980) is used to warm up the GR4J model and 
the remaining data are used for calibration.  

 

 

 

 

 

 

 

 

 

The error model parameters estimated for each catchment are shown in Figure 2. All parameters are 
seasonally dependent. Most estimated values of ρ  are greater than 0.5 (except for ABH) and are generally 

higher in dry months than in wet months. This confirms that the daily streamflows in these catchments are 
highly autocorrelated, especially in dry months. The parameters of σ  and τ  represent the standard deviation 
of the residual at Stage 1 and Stage 2, respectively. The estimate of τ  is less than that of σ  at each 
individual month. This suggests that Stage 2 can explain the prediction error that Stage 1 cannot. The model 
residual is generally reduced when the component of error updating is introduced at Stage 2.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Error model parameters for each catchment: ABH (black), MMH (red), ORB (green) and TAM (blue). 

 

Table 1: Catchment characteristics 

Id Gauge Site Area 
(km2) 

Rainfall 
(mm/yr) 

Streamflow 
(mm/yr) 

Runoff 
coefficient 

Zero 
flows  

Missing 
values 

ABH Abercrombie River at Hadley 
no. 2 

1447 804 96 0.12 10.1% 1.1% 

MMH Mitta Mitta River at 
Hinnomunjie 

1527 1307 262 0.20 0 2.5% 

ORB Orara River at Bawden Bridge 1868 1310 352 0.27 0.4% 0.7% 

TAM Tarwin River at Meeniyan 1066 1070 210 0.20 0 3.8% 

Figure 1: Catchment location 
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Figure 3 compares the evaluation statistics calculated 
from each stage. The NSE of the raw GR4J 
simulation is at least 0.80 for the ABH, ORB and 
TAM catchments, while it is 0.72 for the MMH 
catchment. This implies that GR4J simulates daily 
streamflow reasonably well for all four catchments. 
When the error model at Stage 1 is applied, the NSE 
is slightly increased for the MMH catchment from 
0.71 to 0.72 but is slightly decreased for the other 
catchments. The simple bias-correction in transform 
domain results in little or no improvement in the 
model accuracy (NSE) at least in part because the 
NSE is used as an objective function in calibration. 
The NSE from Stage 2 is consistently greater than 
that from Stage 1 and is higher than NSE for the raw 
GR4J simulation at MMH and TAM catchments. 
With the information from the previous time step, 
Stage 2 can improve the accuracy of model 
prediction particularly for the catchments where the 
raw simulation from the hydrological model is not 
good. There is little room to make such an 
improvement if the hydrological model already 
works very well. The improvement of model 
accuracy is clearer in the comparison of CRPS. 
Instead of only considering the prediction mean in 
NSE, CRPS compares the model accuracy in terms 
of probabilistic prediction. In addition, CRPS does 
not square the error term, as happens in NSE. This 
means that NSE can emphasise a few, large errors, 
which typically occur at high flows. CRPS gives a broader indication of model performance at a range of 
flows, both small and large. The error updating at Stage 2 consistently improves the accuracy of probabilistic 
prediction made from Stage 1. More improvement happens in wet catchments, such as the ORB catchment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We present the Q-Q plots of estimated model residuals from each stage in Figure 3 to investigate the 
reliability of uncertainty estimation. The middle part of Q-Q plots (e.g. from -2 to 2) from both stages 
approximately lie on a straight line. Stage 1 provides reliable uncertainty estimation for low flow, while 
Stage 2 tends to underestimate the occurrence of low flow. Both stages underestimate the occurrence of high 

Figure 3: Comparison of NSE (top panel) and CRPS
(bottom panel) for raw GR4J simulation (dark), Stage 1
(dark grey) and Stage 2 (light grey). Higher values of
NSE indicate better performance, while lower CRPS
values indicate better performance. 

 

Figure 4: The quantile-quantile (Q-Q) plots of estimated model residual at Stage 1 and Stage 2. 
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flows, and this tendency is particularly strong in the Stage 2 model. The distribution of estimated model 
residuals from Stage 1 is close to a standard normal distribution except for high flow. The tails (both upper 
and lower tails) of the residual distribution from Stage 2 are longer than that of a Gaussian distribution. This 
suggests that the Gaussian distribution does not adequately describe the residuals, and an alternative 
distribution must be sought. We will identify and test more appropriate distributions in our future research. 

4. CONCLUSION AND DISCUSSION 

In this study we introduce a two-stage uncertainty estimation to quantify the prediction uncertainty from a 
hydrological model. Stage 1 corrects the prediction bias in the log-sinh transform domain and Stage 2 
updates the error in the original domain. The residuals from both stages are assumed to be Gaussian. Stage 1 
only uses rainfall information from the present time step and can be applied without Stage 2, while Stage 2 
requires more streamflow data from the previous time step. A case study based on four catchments in 
Southeast Australia is performed to assess the model performance. The overall prediction accuracy is 
progressively improved from Stage 1 to Stage 2.  

The reliability of the uncertainty estimation from Stage 1 is generally acceptable. However, we show that 
uncertainty after including error updating is not reliably estimated. The use of seasonally dependent 
parameters and a log-sinh transform is not enough to solve this issue. After applying the error model of Stage 
2, many prediction residuals have been largely reduced but a number of large prediction residuals still 
remain. The estimated model residuals from low and high flows are not well approximated by a Gaussian 
distribution and the occurrence of low and high flows tends to be underestimated. One possible way to 
improve reliability is to adopt a more sophisticated distribution to represent the prediction residual. This will 
be the focus of our future research. 
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