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Abstract: Flood inundation modelling generally involves two steps. The first involves the use of a 
hydrologic model, such as RORB, to estimate the design flood hydrograph for a given design storm event. 
These models require several inputs, such as design rainfalls (i.e. duration, intensity & temporal pattern), 
losses, baseflow and routing parameters; each of which has an associated degree of uncertainty that can affect 
the shape and magnitude of the estimated design flood hydrograph. The second involves the use of these 
design flood hydrographs as inputs into a hydraulic model, to estimate the flood inundation extent. Given the 
uncertainties in hydrologic modelling and their importance in mapping inundation extents, it is of interest to 
determine the potential impacts of hydrological uncertainties on flood inundation mapping. This paper, 
therefore, considers how the uncertainties in design losses can affect the hydraulic analysis.  

The Orara River catchment in north-east NSW was selected for this study, which covers an area of 135 km2. 
The data during the period of 1970 to 2009 was used, with both streamflow (204025) and a pluviograph 
station (59026) available throughout this period. For 43 storm events, rainfall spatial patterns are produced 
using ordinary kriging, with 23 daily rainfall stations, and baseflow was separated using a recursive digital 
filter. The RORB rainfall-runoff model was adopted, with the non-linearity exponent fixed at 0.8 and the 
routing parameter fixed at 15.  

Both the initial and continuing losses were calibrated for each event and then examined to find the best fit 
probability distribution. From the 27 parametric distributions, it was found that the initial loss (IL) can be 
approximated by the 2-parameter Gamma distribution and the continuing loss (CL) can be approximated by 
the 3-parameter Weibull distribution. A Monte Carlo framework was adopted to quantify uncertainties in the 
losses. Ten thousand randomly generated initial and continuing loss values were run through RORB in order 
to derive confidence limits for the peak flow, flood volume and time to peak flow characteristics. These 
derived flood frequency curves (DFFC) are then compared to observed floods and an at-site flood frequency 
analysis (FFA).  

The median relative errors of the DFFC when compared to the at-site FFA were found to be 13.5% and -
23.1%, for the peak flow and flood volumes, respectively. The flood volumes were found to be more 
consistent across all probabilities with a range of -3.6% to -26.6%, as compared to the peak flows that ranged 
from 9% to 39.5%. The confidence band (referring to the 5th and 95th percentiles) were found to be smallest 
about the time to peak flow, which only varied up to 10%, followed by the peak flows which showed around 
±55% variability. The flood volumes saw the widest confidence bands, with a median variation of about 
±63%, which increased to a maximum of about ±105%. 

It has been found that the Monte Carlo framework adopted in this study has the ability to produce more 
accurate and realistic design flood estimates, however, these improvements have not yet been carried through 
to the hydraulic model. Flood inundation maps are generally still depicted as a single deterministic flood 
inundation prediction for a given deterministic design hydrograph. As found in a study by Merwade et al. 
(2008) when the standard errors in peak flows ranged from -36.1% to 56.5%, this caused a shift in the water 
surface elevation from -0.4 m to 1 m and the extent of floodplain inundation varied in width from 54.3 m to 
90.2 m. With peak flows ranging up to ±55% in this study, potentially causing these types of errors in the 
inundation extents, it is clear that probability-weighted flood inundation extents need to be modelled rather 
than a single deterministic prediction. 
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1. INTRODUCTION 

Design flood estimates are often required for flood risk management, for example in the design of bridges, 
culverts, dams and levees, and floodplain mapping. This is expressed as a flood characteristic (usually taken 
as the peak flow or flood volume) associated with a specific annual exceedance probability (AEP). The 
majority of rainfall-based flood estimates in Australia are based on the design event approach (DEA), which 
attempts to transform a design rainfall of a given AEP into a design flood of the same AEP. The main 
assumption of the DEA is that each input variable can be expressed by a measure of central tendency, except 
for rainfall depth.  

All inputs for rainfall-runoff modelling have an associated degree of uncertainty that can affect the shape and 
magnitude of the estimated design flood hydrograph. Therefore, an alternative method is required which is 
able to account for these uncertainties. Monte Carlo simulation, based on the joint probability approach, is 
able to explicitly allow for the probabilistic nature of key inputs and their correlation to determine 
probability-distributed outputs (Rahman et al. 2002a). Of the key inputs, losses have been consistently 
identified as one of the key downfalls in Australian flood hydrology. A number of studies have been devoted 
to rainfall losses, including those by Hill et al. (2013), Loveridge & Rahman (2012), Ilahee & Imteaz (2009), 
Siriwardena et al. (1997), Mein et al. (1995), Nandakumar et al. (1994), Walsh (1991) and Waugh (1990). 

Hydrologic modelling uncertainty propagates through to the flood inundation predictions and whilst many 
studies have investigated hydrologic uncertainties (Loveridge et al. 2013, Tularam & Ilahee 2007, Ishak & 
Rahman 2006, Rahman et al. 2002b), the effect of hydrologic uncertainties on hydraulic models is largely 
unknown. This is primarily due to the intense computing power required to simulate flood flow behaviour 
across a floodplain for many realisations of the hydrologic process (as in Monte Carlo simulation). Given the 
uncertainty in hydrologic models and its importance in flood inundation mapping, this paper considers how 
uncertainties in losses can affect the hydraulic analysis. The uncertainties in the initial and continuing losses 
are quantified by adopting a limited Monte Carlo framework with 10,000 randomly generated loss values. 

2. STUDY AREA AND DATA 

For this study, the Orara River catchment was selected, which is located approximately 10km west of Coffs 
Harbour in NSW. The catchment was selected based on the daily rainfall gauge density and availability of 
long periods of quality pluviograph and streamflow records. The Orara River catchment, as shown in Figure 
1, covers an area of 135km2, with a catchment relief of 795 meters. The catchment is principally influenced 
by summer rainfall, with a mean annual rainfall of 1,793 mm. 

There are a total 37 years of streamflow data recorded for the Orara River at Karangi (204025). A 
pluviograph station (59026) located near the catchment centroid provided hourly rainfall data; whilst an 
additional 23 daily rainfall gauges provided greater spatial detail across the catchment. The data period from 
1970-2009 (39 years) was used in this study, which was available for both the pluviograph and streamflow 
gauges. 

 

Figure 1: Catchment location and detailed map (inset shows location within NSW). 
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3. METHODOLOGY 

Storm events were selected based on rainfall bursts of 12 hour duration, resulting in a total of 43 events for 
the study catchment. The rainfall spatial pattern for each event was produced using ordinary kriging, with 
daily rainfall stations in and around the study catchment. The contribution of baseflow to each event was 
removed using a recursive digital filter with 9 passes and a filter factor of 0.925 (see Murphy et al., 2011). 
The catchment modelling for the study area was performed using the RORB rainfall-runoff model, with the 
non-linearity exponent (m) being fixed at 0.8 (Laurenson et al., 2007).  

The initial loss-continuing loss (IL-CL) model was adopted, as it has been widely used across Australia. The 
IL, CL and routing parameter (kc) were calibrated for each event using RORB, by manually fitting the 
modelled hydrograph to the surface runoff. The median kc value, calibrated for the Orara River catchment, 
was found to be 15 and was kept fixed in the analysis. The loss data was tested against 27 parametric 
distributions, including bounded, unbounded, non-negative and advanced distributions, to find the best fit 
distribution for each loss parameter. 

Monte Carlo simulation is commonly adopted for uncertainty analyses in modelling. It requires the random 
generation of many realisations of the inputs (in this case 10,000 values for the initial and continuing losses) 
that are run through the RORB model in order to derive confidence limits for a given flood characteristic. For 
instance, in this paper, the peak flow, flood volume and time to peak flow were stored and then used to derive 
the flood frequency curve for that characteristic. Figure 2 illustrates the Monte Carlo framework adopted in 
this study. An at-site flood frequency analysis (FFA) was also performed as an independent comparison, by 
adopting the LP3 distribution in a Bayesian framework using FLIKE (Kuczera, 1999). 

 

Figure 2: Conceptual diagram of the limited Monte Carlo framework (with stochastic losses & other 
inputs fixed). 

4. RESULTS AND DISCUSSION 

The variability in the calibrated losses were investigated; from the 27 parametric distributions tested it was 
found that the initial loss (IL) can be approximated by the 2-parameter Gamma distribution and the 
continuing loss (CL) can be approximated by the 3-parameter Weibull distribution (refer to Loveridge et al, 
2013). The two losses were treated independently of each other, as it was found that there was little 
correlation between the IL and CL.  
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4.1. Variability in peak flows 

The loss values derived from the aforementioned distributions were combined with other design inputs to 
derive the design peak flows, which were compared to the observed flood peaks and the at-site flood 
frequency analysis (see Figure 3). The 5% and 95% confidence limits are shown as the blue dashed lines in 
Figure 3. From this plot, it can be seen that the derived flood frequency curve (DFFC) reproduces the shape 
of the at-site FFA reasonably well, however it has a tendency to overestimate peak flows. In terms of 
percentages, the median relative error across all AEP’s was found to be 13.5%, ranging from 9 to 39.5% 
(Table 1). A relative error of 0% is ideal, however this is never possible in hydrology. More specifically, in 
regional flood frequency analysis relative errors of up to 40% to 60% are reasonable (see Haddad and 
Rahman, 2012). 

 

Figure 3: Derived flood frequency curve (DFFC) for peak flows 

The peak flows have a median variability (referring to the 5% and 95% confidence limits) of around ±25%. It 
can be seen that there is a much higher variability for more frequent AEP’s, with about ±55% and ±34% 
variation for AEP’s of 0.39 and 0.18, respectively. This reduces for the less frequent AEP’s to around ±18% 
and ±15% for AEP’s of 0.02 and 0.01, respectively. 

Table 1: Relative error of the peak flows derived from the Monte Carlo simulation and the at-site flood 
frequency analysis 

Peak Flow (m3/s) Annual Exceedance Probability 
0.39 0.18 0.10 0.05 0.02 0.01 

DFFC 276 479 608 776 954 1122 
FFA 199 392 536 682 875 1021 
Relative Error 39.5% 22.3% 13.3% 13.7% 9.0% 9.9% 

4.2. Variability in flood volumes 

The DFFC for the flood volumes were compared to the observed flood peaks and the at-site flood frequency 
analysis (see Figure 4). The 5% and 95% confidence limits are shown as the blue dashed lines in Figure 4. 
From the DFFC it can be seen that, unlike the peak flows, the flood volumes were consistently 
underestimated. The relative errors were fairly consistent for most AEP’s (see Table 2), with a median 
relative error across all AEP’s of -23.1% and ranging from -13.6% to -26.6%. 

The flood volumes have a median variability of around ±63%. Compared with the peak flows, the flood 
volumes have significantly more variability across all probabilities. There is a higher variability for more 
frequent AEP’s, with about ±105% and ±78% variation for AEP’s of 0.39 and 0.18, respectively. This 
reduces for the less frequent AEP’s to around ±50% and ±43% for AEP’s of 0.02 and 0.01, respectively. It is 
worth noting that whilst the variability of peak flows was fairly evenly distributed, the flood volumes have a 
much wider band for the upper limit than for the lower limit, particularly for more frequent AEP’s. 
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Figure 4: Derived flood frequency curve (DFFC) for flood volumes 

Table 2: Relative error of the flood volumes derived from the Monte Carlo simulation and the at-site flood 
frequency analysis 

Flood Volume (m3) Annual Exceedance Probability 
0.39 0.18 0.10 0.05 0.02 0.01 

DFFC 1.25 E+07 2.37 E+07 3.16 E+07 4.22 E+07 5.90 E+07 7.15 E+07 
FFA 1.45 E+07 3.02 E+07 4.30 E+07 5.69 E+07 7.67 E+07 9.29 E+07 
Relative Error -13.6% -21.6% -26.6% -25.8% -23.1% -23.0% 

4.3. Variability in time to peak flows 

The DFFC for the time to peak flows, including the 5% and 95% confidence limits (shown as the blue dashed 
lines), are shown in Figure 5. The time to peak has a median variability of around ±4%, significantly less 
than both the peak flow and flood volume. There is more variability for more frequent AEP’s, with about 
±9% and ±7% variation for AEP’s of 0.39 and 0.18, respectively. Again, this variability reduces for less 
frequent AEP’s, to around ±2.3% for both AEP’s of 0.02 and 0.01. Similar to the flood volumes, the time to 
peak has a wider band for the upper limit than for the lower limit. 

4.4. Variability in hydrograph shapes 

Out of the 10,000 hydrographs generated for each duration and probability, a sample of 240 were randomly 
selected and plotted, as seen in Figure 6. The hydrographs for the 12 hour duration were plotted (as this is the 
critical duration for the Orara River catchment) and for AEP’s ranging from 0.39 to 0.01. From these plots, it 
is clear that there is significant variation between the design hydrographs produced when uncertainties in the 
design losses are considered. The variability between each individual hydrograph can also be seen to 
diminish as the AEP frequency decreases. 

4.5. Impact on flood inundation maps 

Flood inundation modelling involves two processes; firstly, a hydrologic model, such as RORB, is used to 
estimate the design flood hydrograph for a given storm event, and; secondly, a hydraulic model is used to 
estimate the flood inundation extent. In Australian practice the resulting flood inundation maps are depicted 
by a single deterministic prediction for the flood extent for the given hydrograph, whether it be for a 0.01 or 
0.5 AEP. However, flood extents are not adequately portrayed by a single deterministic line due to the 
inherent uncertainties in design floods, model parameters, topography and model structure. 
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Figure 5: Derived flood frequency curve (DFFC) for time to peak flow 

 
Figure 6: A sample of the flood hydrographs simulated for with 12 hour durations and AEP’s of (a) 0.39, 

(b) 0.10, (c) 0.02 & (d) 0.01; the blue line is the median of all 10,000 generated hydrographs. 

Flood inundation modelling should consider all relevant flooding scenarios and their given probabilities, 
along with a complete examination of the associated uncertainties. These models should produce flood maps 
with probability-weighted floodplain extents, rather than a single deterministic prediction. With increases in 
the available computing power, examining the uncertainties associated with design floods, model parameters, 
topography and model structure is quite feasible and is becoming more widely considered by researchers and 
practitioners alike. One such study, by Merwade et al. (2008), investigated uncertainties in flood inundation 
mapping. They found that standard errors in peak flows, ranging from -36.1% to 56.5%, caused shifts in the 
water surface elevation from -0.4 to 1 m and the extent of floodplain inundation varied in width from 54.3 m 
to 90.2 m. In this study, it was shown that the peak flow varies about ±55% for an AEP of 0.39. Which, as 
shown by Merwade et al. (2008) could potentially lead to significant ranges for both the water surface 
elevation and inundation extents. Research into the impact of these simulated hydrographs (using Monte 
Carlo simulation) on flood inundation modelling is ongoing. 

(a) (b) 

(c) (d) 
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5. CONCLUSIONS 

When the DFFC from the Monte Carlo simulation were compared to the at-site FFA they were found to be 
reasonable, though the peak flows were consistently overestimated and the flood volumes consistently 
underestimated. It has been shown that uncertainties in design losses, using the RORB rainfall-runoff model, 
can make differences of up to about ±55% for peak flows, ±105% for flood volumes and ±9% for time to 
peak flows. This degree of uncertainty will most likely lead to significant uncertainties in the flood 
inundation predictions, so should be considered when performing the hydraulic analysis. This is being 
investigated as part of this research, which will be published in the near future. It should be noted that this 
study only adopted a limited Monte Carlo framework, which focused on investigating the uncertainties in the 
losses. In reality all hydrologic variables should be treated stochastically, including the rainfall depth, rainfall 
temporal and spatial patterns, storm duration and baseflow contribution, however, this is beyond the scope of 
this paper. 
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