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Abstract: Disaggregation methods are designed to produce finer temporal scale data from coarser 
temporal scale data. An example of this need is the modification of monthly scale precipitation data to drive 
dynamic hydrological models operated at daily scale. Such issues occur for dynamic hydrological forecasts in 
which the General Circulation Models (GCMs) are used to generate the required precipitation data but the 
GCM outputs are only be reliable at coarser temporal scales. Stochastic weather generation methods together 
with simple adjustment of the total amounts provide a simple and efficient way for data disaggregation. 
However, the success of stochastic weather generation depends critically on whether the chain-dependent 
process can mimic the transient property between dry and wet days and whether the specified statistical 
distribution for amounts on wet days can capture the distributional properties of the amounts. Note that there 
are many small precipitation events within the catchment data which are treated differently for different 
purpose. Simple elimination by using different threshold values to define dry/wet days was frequently used in 
practice. A single statistical distribution may not be sufficient to capture the characteristics of amounts on 
positive data. Furthermore, the performance of dynamic hydrological model depends also on whether the 
specified statistical distribution for amounts can capture large precipitation events. Various proposals have 
been developed to better capture the precipitation pattern, including the use of high-order Markov Chain 
model for the occurrence pattern and the use of a mixed distribution for the amounts. 

In this paper, a hybrid stochastic weather generation method is proposed to simulate daily precipitation data 
based on the monthly data at catchment scale. Firstly, a multiple state Markov chain model is used for 
occurrence pattern as two state model  may not reflect different weather patterns. Secondly, a truncated 
Gamma distribution is used for smaller precipitation amounts as usual and a censored extended Burr XII 
distribution is employed for larger amounts as it can better capture the extreme values. By doing this, one 
needs not deal with discontinuity in the distribution of precipitation amounts and ensure that the state and its 
corresponding amount are well matched. In order to take account of seasonality, the models are constructed 
for individual months.  

The proposed method is demonstrated by using catchment data from different climatic regions in Australia. 
Results show that  

(1) The proposed multiple state Markov chain model can capture the states reasonable well;  

(2) The seasonality is an important factor to be considered in the disaggregation;  

(3) The proposed distributions for different states can mimic the amounts well.  

As an regression based approach for the occurrences and distribution fitting approach for the amounts, the 
proposed method can be easily extended to include external predictors for generalization and/or 
improvements. 

Keywords: Censored Extended Burr XII distribution; Markov chain model; stochastic simulation; 
truncated Gamma distribution 
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1. INTRODUCTION 

Daily precipitation is a critical input for hydrological models, especially for dynamic hydrological models, as 
well as related models in other researches such as environment and agriculture. From a forecasting point of 
view, hydrological models rely heavily on precipitation at the same daily scale. While general circulation 
models (GCMs) are probably the only tools to generate the required precipitation data for using hydrological 
models to make streamflow forecasting, it is hard to produce reliable precipitation data at daily scale for the 
future seasons, mainly due to low skills in GCMs at daily scale, especially for precipitation. In order to use 
precipitation data with large temporal scale in hydrological models requiring daily data, the large temporal 
scale outputs need to be disaggregated into finer temporal scales. 

Data disaggregation of precipitation series is a difficult task due to its unique characteristics, especially at 
daily and finer scales. As the main purpose of our disaggregation is to generate daily precipitation values for 
a given monthly value, we do not need to specify the (auto-)correlation structure in the monthly series but 
treat them as observed. Stochastic weather generation directly models the binary indicator variable of dry or 
wet event by well-known “chain-dependent process” model defined by transient matrix and precipitation 
amounts on wet day by a statistical distribution (see, for example, Richardson, 1981; Wilks, 1999). From 
statistical point of view, stochastic weather generator provides a simple and direct way to simulate the daily 
precipitation data.  

The success of a stochastic weather generator depends critically on whether the chain-dependent process can 
mimic the transient property between dry and wet days and whether the specified statistical distribution can 
capture the distributional properties of the amounts. The use of first-order Markov Chain for the occurrence 
may not be enough to capture the transition pattern between dry and wet states (Wilks, 1999). Various 
proposals have been developed to better capture the occurrence pattern, including the use of high-order 
Markov Chain model (see, Lennartsson et al., 2008 for example) and the inclusion of external drivers and 
seasonality (Furrer and Katz, 2007). 

In this paper, we propose a stochastic weather generation by using a multiple state Markov chain model for 
occurrences to handle large number of small amounts for catchment data and using truncated and censored 
distributions for the amounts in different rain states. The method considers seasonality by constructing 
individual models for different months and monthly variation by incorporating the low-frequency amounts as 
a model predictor. The proposed method is 
demonstrated by catchment data used in our project 
in Australia.  

2. DATA AND PRELIMINARY ANALYSIS 

Six catchments located in eastern Australia are 
investigated (as provided by the Bureau of 
Meteorology), covering different climate regions 
(summer rainfall, winter rainfall and non-seasonal 
rainfall) and having different sizes (from tens to 
thousand km2). Due to the page limit, we only 
present the results for the catchments numbered as 
“204041” (Orara River @ Bawden Bridge in New 
South Wales, covering 1637km2, with summer 
rainfall pattern) as a representative for 
demonstration. The catchment rainfall data is 
determined by averaging the data from the Australian 
Water Availability Project (AWAP) 0.05 degree x 
0.05 degree gridded dataset (Jones et al., 2009). 

Unlike station data, catchment data are obtained by 
interpolation which causes a noticeable proportion of 
smaller values. There is no common agreement on 
the choice of threshold to define rainy days. Figure 
plots the proportions of the days with non-zero, 
above 2mm and between 0 and 2mm, respectively, 
for individual months. It can be seen from Figure 1 
that there are large proportions of non-zeros and 
between 0-2mm. In fact even about 10% of days Figure 1. Boxplots of proportions for the days with 

different rain states by individual months.
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have precipitation amounts between 0-1mm. It is obvious that different threshold values can affect statistical 
models significantly, especially the transition probabilities. Furthermore, a higher threshold value results in 
less number of values in the lower end, causing more emphasis on larger values which are frequently missed 
in simulation (see Furrer and Katz, 2007 and 2008 for discussions). Furthermore, clear seasonality can be 
viewed in the occurrence probability at different threshold values, confirming the importance of considering 
seasonality in both occurrence and amount models. 

3. METHODOLOGY DEVELOPMENT 

Throughout the paper, the daily precipitation series at catchment scale is measured in millimeter (mm) and 
denoted as tz  ( 1, 2, ,t n=  ) with n being the number of daily observations. 

Model the occurrences of rain status 

Instead of artificial definition of the threshold for wet/dry day and with intention to better capture the 
characteristics of amounts on wet day, we define a three-state process for the precipitation occurrence as 
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and name them as dry, moist and wet day, respectively. As usual, we treat c as pre-defined. The advantage of 
doing this is that we can model the distribution of precipitation amount in the moist day and has a better 
chance to simulate large amount in wet day. Let 
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Here only 1m −  category indices tiJ  ( 1, , 1i m= − ) is needed with m being the number of category (which 

is 3 in the above setting). Unlike the traditional specification of Markov Chain defined by conditional 
probability of wet day, we use the following probability 
 { }1 2Pr 1| , ,ti ti t tJ x xπ − −= =   (3) 

where the sequence of past occurrence values yet to be specified.  
The multinomial logit model defined by Agresti (1990, Section 9.2), defined as 

 1
1

11

exp( )
( )

1 exp( )
i t

ti m

l tl

U

U
π −

−
−=

′
=

′+
β

β
β

, (4) 

is frequently employed in the analysis of categorical data series. Here ,1 ,2 ,( , , , )i i i i qβ β β ′= β  (

1, , 1i m= − ) are the vectors of regression coefficients with q yet to be determined and 1tU −  is the 

collection of covariates and possible lag variables. In this paper, we specify the past events as the rain state in 
the previous day. The multinomial logit model is formed by linear relationships of 
 { } 1log ti tm l tUπ π −′= β . (5) 

Note that our target is to disaggregate monthly data to daily and that the correlations between months are 
possibly dominated seasonality. Therefore, one can simply construct a model for each month by eliminate the 
smoothness between month. That is, we construct separate models for each month. 

Model the amount distribution for moist days 

Note that the precipitation amounts are bounded between 0 and c. The statistical distribution modeling the 
amounts should have a finite support and flexible enough to capture the distributional pattern. Following the 
traditional use of Gamma distribution, we propose the use of the called truncated Gamma distribution defined 
by density function 
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(Chapman, 1956) with 1 0α >  and 2 0α >  being the parameters, where  

 ( )1 2 21
1 1 2 1 2 10
( , ) ,

c xe x dx cα α αα α α γ α α− −Κ = = . (7) 

with 2
1 1 2 1 2( , ) ( )αα α α αΚ → Γ  as c → ∞ . Here 
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0
( , )

t x aa t e x dxγ − −=   (8) 

is the truncated gamma function which can be evaluated directly in many software package. For a given c, 
the distributional parameters can be estimated by the maximum likelihood estimation. 

Model the amount distribution for wet days 

In order to capture the possible long-tail properties in precipitation amounts, we need a distribution with 
flexible tail properties. The Extended Burr XII distribution was proposed for modeling flood frequency 
distribution (Shao et al., 2004 and 2006) has been used for distribution modeling where the tail properties are 
important, including rainfall depth (Gargouri-Ellouze and Chebchoub 2008) and flow duration curve (Shao et 
al., 2009). We then propose the censored Extended Burr XII distribution with density function 
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The range of the censored EBXII distribution is c x≤ < ∞  for 5 0α ≤  and 41
3 5c x αα α≤ ≤  for 5 0α > . Note 

that EBXII distribution has the Pareto distribution as another embedded distribution (with 4α → +∞  and 

5α → −∞ ), which however has a positive support and may leave a gap between the selected threshold and 

low bound of the Pareto distribution. To avoid this gap, we prefer to fix the parameter 4 1α =  as the special 

case which is indeed the Generalized Pareto distribution. Doing this specialization does not only reduce 
complexity of programming but also increase the flexibility. 

For the censored EBXII distribution, it is important to determine if the estimated value of 5α  is positive, zero 

or negative. Let ( )3 4 5
ˆ ˆ ˆ, ,α α α  be the maximum likelihood estimates of EBXII distribution. Similar to the way 

for the extended Burr XII distribution, we need to derive a criterion to determine the sign of 5α , which is 

given by simple calcuations as 
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Let ( )( ) ( )
3 4,w wα α  be the maximum likelihood estimates by fitting the data with the Weibull distribution (the 

degenerated case of the EBXII distribution with 5 0α = ). If ( ) ( )
3 4( , , ) 0w wx α αΔ > , then 5

ˆ 0α > , while 
( ) ( )
3 4( , , ) 0w wx α αΔ <  implies 5

ˆ 0α <  and ( ) ( )
3 4( , , ) 0w wx α αΔ =  indicates the Weibill fitting with 5

ˆ 0α = . 

Selection between GPD/Weibull and EBXII 

Given that one prefers the simple GPD or Weibull to EBXII, a statistical support is needed for the use of 
simple models. The likelihood ratio test has been used widely for this purpose. Let 

 { }ˆ ˆ2 log ( ) ( )s s g gLRT L Lθ θ= −  (12) 

be the ratio of two likelihood functions: the sample distribution s (GPD or Weibull) having fewer parameters 

Sθ  and the general distribution g (EBXII) having more parameters gθ  with s gθ θ⊂ , where ŝθ  and ĝθ  are the 

maximum likelihood estimates for corresponding distributions, respectively. Asymptotically, the test statistic 
is distributed as a chi-square random variable with degree of freedom equal to the difference in the number of 

parameters between the two candidate distributions. Therefore, the p-value is given as 2
1Pr( )LRTχ >  and the 

simple distribution will be accepted if the computed p-value is greater than the pre-determined confidence 
level (0.05 say). 
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4. RESULTS 

Due to the space limitation, we do 
not report the results for two states 
Markov model here for comparison 
but simply state that the two state 
model varies dramatically 
according to different threshold 
values. The results for three state 
Markov model is given in Table 1, 
from which the seasonality is also 
clearly shown. In order to see the 
model performance, we conducted 
1000 simulations for the three state 
model and summarized the results 
in Figure 2 by boxplot with the 
empirical probabilities from the 
observation. It is clearly seen that 
the model performance is quite 
good. The monthly variation is also 
clearly indicated from the empirical 
probabilities based on observations. 

For the rain amount modeling, 
Table 2 gives the estimated 
distributional parameter values for 
different threshold values when 
Gamma distribution is used to 
model the rain amount on rain day. 
It can be seen that the estimates 
change greatly for different 
threshold values. It again support 
that the small rain amounts should 
be treat carefully.  

Based on three state model for occurrences with 
“moist” for amounts between (0, 2mm) and “wet” for 
amounts>2mm, and using the truncated Gamma 
distribution for moist day and censored extended Burr 
XII distribution for wet day, Table 3 gives the estimates 
of the distributional parameters. 

For the censored extended Burr XII distribution, we 
also include the parameter estimation for the special 
cases of Weibull distribution (with α5=0) and 
Generalized Pareto distribution (with α4=1). The 
likelihood ratios test concludes that the censored 
extended Burr XII distribution should be used for all 
cases. For the truncated Gamma distribution, the shape 
parameter (α2) is relatively stable while the scale 
parameter (α2) varies from month to month. The 
parameter values for the censored extended Burr 
distribution change greatly because the distribution is 
used to capture the tail behavior which changes from 
month to month. The fitted density distributions 
together with the histograms from the observations for 
individual months are plotted in Figure 3 for the moist 
days and Figure 4 for the wet days. It can be seen that 
the fitted distributions capture the empirical ones very well for both states. The seasonality is also clearly 
shown in the fitting distributions for amounts. 

Table 1. The estimated logit regression coefficients with three 
precipitation states. The results are for individual months or for all 
data. The values in brackets are corresponding standard deviations. 

Month Log(Pr[Dry]/Pr[Wet] Log(Pr[Moist]/Pr[Wet] 
 Intercept Dry Moist Intercept Dry Moist 
1 -3.550 

(0.254) 
5.405 

(0.358) 
2.857 

(0.278) 
-0.876 
(0.078) 

2.722 
(0.265) 

1.672 
(0.111)

2 3.526 
(0.246) 

5.037 
(0.364) 

2.688 
(0.275) 

-0.904 
(0.077) 

2.571 
(0.276) 

1.542 
(0.114)

3 -3.782 
(0.280) 

5.382 
(0.372) 

3.002 
(0.302) 

-0.830 
(0.076) 

2.570 
(0.254) 

1.500 
(0.109)

4 -3.373 
(0.294) 

5.687 
(0.384) 

3.068 
(0.312) 

-0.545 
(0.088) 

2.723 
(0.264) 

1.522 
(0.119)

5 -3.727 
(0.382) 

6.299 
(0.441) 

3.820 
(0.396) 

-0.405 
(0.093) 

2.513 
(0.244) 

1.581 
(0.127)

6 -3.077 
(0.323) 

6.018 
(0.413) 

3.402 
(0.341) 

-0.396 
(0.107) 

2.917 
(0.281) 

1.844 
(0.141)

7 -2.236 
(0.255) 

5.504 
(0.350) 

3.035 
(0.280) 

-0.415 
(0.126) 

3.001 
(0.275) 

2.081 
(0.164)

8 -2.970 
(0.362) 

6.150 
(0.423) 

3.793 
(0.379) 

-0.145 
(0.118) 

2.551 
(0.252) 

1.496 
(0.157)

9 -2.324 
(0.280) 

5.054 
(0.343) 

2.674 
(0.299) 

0.167 
(0.114) 

1.908 
(0.234) 

1.010 
(0.146)

10 -2.367 
(0.201) 

4.579 
(0.278) 

2.352 
(0.224) 

-0.288 
(0.090) 

2.101 
(0.216) 

1.178 
(0.123)

11 -2.804 
(0.230) 

4.831 
(0.314) 

2.417 
(0.252) 

-0.331 
(0.084) 

2.130 
(0.232) 

1.056 
(0.116)

12 -3.106 
(0.223) 

4.925 
(0.338) 

2.619 
(0.247) 

-0.700 
(0.080) 

2.757 
(0.263) 

1.521 
(0.113)

All -3.119 
(0.076) 

5.616 
(0.100) 

3.033 
(0.082) 

-0.557 
(0.026) 

2.648 
(0.072) 

1.555 
(0.036)

Figure 2. Boxplots of simulated states for three-
state Markov model. The results are for individual 
months. The empirical values from observations 
are plotted as “X”.
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Table 2. The estimated distributional parameters for Catchment 204041, represented by Gamma distribution, 
conditional on wet days with difference threshold defining dry day (less or equal to the threshold is marked as 
dry). The data were shifted to the support of [0, )∞  by extracting the threshold values. 

Month Threshold=0mm Threshold=0.2mm Threshold=1mm Threshold=2mm 
 Shape Rate Shape Rate Shape Rate Shape Rate 
1 0.370 0.055 0.521 0.063 0.626 0.062 0.671 0.060 
2 0.391 0.053 0.537 0.061 0.627 0.060 0.657 0.056 
3 0.382 0.057 0.537 0.066 0.618 0.064 0.632 0.058 
4 0.316 0.060 0.492 0.067 0.587 0.062 0.635 0.058 
5 0.301 0.066 0.457 0.069 0.549 0.061 0.580 0.055 
6 0.259 0.059 0.409 0.055 0.498 0.047 0.533 0.042 
7 0.250 0.073 0.429 0.070 0.496 0.057 0.583 0.052 
8 0.270 0.083 0.458 0.084 0.563 0.072 0.616 0.066 
9 0.333 0.135 0.526 0.138 0.673 0.130 0.680 0.112 

10 0.343 0.086 0.512 0.095 0.630 0.091 0.645 0.081 
11 0.366 0.075 0.529 0.084 0.629 0.077 0.749 0.081 
12 0.375 0.073 0.563 0.085 0.702 0.087 0.786 0.087 
All 0.321 0.064 0.494 0.071 0.597 0.067 0.643 0.063 

 

Figure 4. Histograms of observations for wet state 
with precipitation being greater than 2 mm. The 
fitted densities are given by red line. The results 
are for all data with division to monthly 

Figure 3. Histograms of observations for moist state 
with precipitation between 0 and 2 mm. The fitted 
densities are given by red line. The results are for 
all data with division to monthly. 

 

5. CONCLUSIONS 

In this paper, we developed a multi-state Markov model for rainfall status in order to better capture the 
transition from state to state. For moist state, we use the Gamma distribution to model the precipitation 
amounts as usual but in the sense of truncation due to its upper limit. For the wet state, we use the censored 
extended Burr XII distribution due to its flexibility capability to capture different tail behaviors. The 
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Table 3. The estimated distribution parameters for Catchment 204041, for moist state (with precipitation 
amounts between 0 and 2 mm) by truncated Gamma and wet state (with precipitation amount>2mm) by 
censored Extended Burr XII distribution. The results are for individual months or for all data. The results for 
truncated GPD and truncated Weibull distributions are also given. 

Month Gamma  Burr   GPD  Weibull  
 α1 α2 α3 α4 α5 α3 α5 α3 α4 Δ

1 3.837 0.450 4.213 4.757 -5.043 10.939 -0.170 13.26 0.999 -251 
2 5.040 0.460 4.492 4.220 -4.369 10.996 -0.191 13.56 0.983 -237 
3 4.167 0.460 9.934 21.02 -26.48 9.935 -0.213 12.53 0.959 -364 
4 2.031 0.429 3.759 6.185 -6.395 9.321 -0.262 12.37 0.938 -200 
5 1.857 0.420 2.932 11.21 -12.55 8.560 -0.302 11.78 0.903 -175 
6 1.197 0.404 2.115 100 -136.0 9.645 -0.344 13.55 0.877 -99.7 
7 1.464 0.359 2.346 40.947 -51.15 9.142 -0.304 12.48 0.913 -64.1 
8 1.339 0.382 2.600 17.19 -19.88 8.761 -0.217 11.16 0.969 -110 
9 1.391 0.446 2.135 134.79 -137.27 7.413 -0.080 8.512 1.129 -91.5 

10 2.633 0.427 2.642 15.939 -17.02 8.084 -0.178 10.04 1.009 -247 
11 2.247 0.478 5.222 3.370 -2.753 10.707 -0.052 11.87 1.121 -123 
12 3.025 0.446 5.908 2.835 -1.999 10.540 -0.041 11.65 1.148 -208 
All 2.216 0.421 3.047 9.906 -11.47 9.661 -0.201 12.10 0.980 -2347 

 

examples demonstrate the necessity of monthly modeling in order to capture seasonality which is an inherit 
property in many cases. 
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