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Abstract: The carrying capacity is assumed to be constant in population growth models used for resource
assessment and management. However, changes to the carrying capacity do occur due to both exogenic and
endogenic processes. The need to treat the carrying capacity as a function of time has long been recognised in
order to model population dynamics in an environment that undergoes change. Most populations experience
fluctuations in their environment due to seasonal change.

The simplest approach is to specify some time-dependent function for the carrying capacity that reflects the
observed behaviour of the changing environment. To date these models are deterministic with overlapping
generations, the kind that are best described using continuous equations. However, the dynamics of some
populations may not be appropriately described with continuous equations. Populations with non-overlapping
generations are better described by discrete (difference equation) models.

In this paper, by considering the carrying capacity as a proxy for the state of the environment, we analyse a
population whose growth is governed by a discrete logistic model and whose carrying capacity is modelled by
a separate difference equation. The existence of fixed points is established and the stability of fixed points is
discussed. Aperiodic behaviour is also shown to exist.
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1 INTRODUCTION

Ecological modelling has a wide variety of applications, and it is an important tool used in environmental and
resource management. It is often used to assess the survival or possible extinction of a species or ecosystem, by
evaluating the potential impact of changes to the environment. The concept of “carrying capacity” in ecological
modelling was first introduced by Belgian mathematician Verhulst in 1838, as a limitation to exponential
population growth (Banks, 1994). In ecology, it is generally used as a proxy representing the state of the
environment, often related to the amount food, water, space or other resources, or the impact of pollutants
having a detrimental effect on the environment. In general, carrying capacity is considered to be the maximum
population an environment can sustain (Monte-Luna et al., 2004).

In many applications, there is an underlying assumption that a finite level of resources implies a fixed level
of resources. In particular, in resource management the carrying capacity is often assumed to be constant and
unchanging (Monte-Luna et al., 2004). Many efforts to predict the world’s carrying capacity, the maximum
sustainable population, are based on this assumption (Cohen, 1995). However, technological developments
have raised crop yields, allowing a greater population to be supported by a smaller land area (Waggoner,
1996). Thus for human populations, a constant carrying capacity is not realistic (Meyer and Ausubel, 1999).
Similarly in nature, the inherent variability of natural systems (Ludwig et al., 1993) means that assuming an
unchanging carrying capacity fails to adequately represent the environment.

Monte-Luna et al. (2004) analysed different ways the concept of carrying capacity is applied to populations,
communities, ecosystems and the biosphere, and proposed the following definition for carrying capacity:

“the limit of growth or development of each and all hierarchical levels of biological interaction,
beginning with the population, and shaped by processes and interdependent relationships between
finite resources and the consumers of these resources”.

This definition highlights the importance of defining the carrying capacity in a mathematical model so that it
may vary with time. Such a treatment of the concept allows a more realistic portrayal of the way in which
various processes and relationships, both biotic and abiotic, influence the environment.

2 A SIMPLE MODEL—THE LOGISTIC EQUATION

The logistic, or Verhulst, equation is the simplest of ecological models, and is given by (Banks, 1994):

dN

dt
= rN

(
1− N

K

)
, N(0) = N0, (1)

where N is the population of a given species, r is the intrinsic growth rate and K is the constant carrying
capacity – a proxy for the state of the environment. N0 is the initial population at time t = 0. The exponential
growth of the population governed by rN is limited by intra-species competition for resources described by
the term − rN2

K .

Now, it can be shown that all solutions to (1) with positive initial conditions, N0 > 0, converge montonically
to the carrying capacity, K, as time t tends to infinity. This does not successfully represent reality, as phys-
ical and biological processes affect the environment, in turn changing the carrying capacity for a given species.

Time-dependent carrying capacities have been successfully used in many models (Banks, 1994). In these
cases, the carrying capacity is defined explicitly as a function of time, K = K(t). A periodic form of the
carrying capacity, for example:

K(t) = K0 + ε sin(ωt), (2)

where ε and ω are constants, might be used to represent seasonal variations in the environment, possibly
influencing the amount of vegetation available for food. It is important to note that the carrying capacity
is completely independent of the population, meaning that the population does not have any impact on the
environment. Figure 1 plots two solutions to the logistic equation with carrying capacity given by (2), with
r = 1.2 and r = 5. It can be seen that both solutions tend to follow the carrying capacity curve, and while a
larger growth rate r causes the population to always be much closer to the carrying capacity K, solutions have
the same period. As opposed to the monotonic convergence when the carrying capacity is constant, a periodic
carrying capacity forces periodicity onto the population.
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Figure 1: Plot of N against t for equations (1) and (2), with K0 = 1, N0 = 0.5, ω = 1 and ε = 0.1.

Models of a similar form to this have been used in many applications, representing population growth in
a periodic environment (Coleman et al., 1979; Cushing, 1986). Multiple time scales have also been used,
representing environmental fluctuations on a longer time scale than that of the population (Grozdanovski et al.,
2009; Shepherd and Stojkov, 2007). Other time-dependent carrying capacities have been used to model fish
population dynamics (Ikeda and Yokoi, 1980), microbial biomass (Safuan et al., 2011) and technological
phenomena (Meyer, 1994). Carrying capacity has also been defined as a state-variable in various applications
(Huzimura and Matsuyama, 1999; Meyer and Ausubel, 1999; Safuan et al., 2012). This allows better portrayal
of changes in the environment as it is shaped by various processes and relationships within an ecosystem.

3 DISCRETE MODELS

While continuous models have been successfully applied in a variety of situations, one fundamental assump-
tion is that the species in question has continuous, overlapping generations. However, it is observed in nature
that many species do not possess this quality. For example, some anadromous fishes, such as salmon, have an-
nual spawning seasons, with births taking place at the same time every year. Many insects breed and die before
the next generation emerges, often having overwintered as eggs, larvae or pupae. Annual plant species also
set seed and die before the next generation germinates. Populations with this characteristic of non-overlapping
generations are much better described by discrete-time models than continuous equations (Hu et al., 2011).

In order to derive a discrete form of the logistic equation, consider the approximation,

dN

dt
≈ Nn+1 −Nn

∆t
, (3)

whereNn andNn+1 are consecutive points, separated by a time step ∆t. Now, by letting ∆t = 1 and applying
the approximation to the logistic equation (1), then the logistic map is obtained:

Nn+1 = αNn

(
1− (α− 1)

α
· Nn

K0

)
, n ∈ Z+ (4)

where α = 1 + r, Nn is the population at time-step n and K0 is the constant carrying capacity.

3.1 Logistic map: Constant carrying capacity

The dynamics of the logistic map (4) when varying the growth rate are very well known. For 0 < α < 1,
the intrinsic growth rate r is negative (since α = 1 + r), and thus the population becomes extinct. For
1 < α < 3, the intrinsic growth rate of the population is positive, and an equilibrium is reached with the
environment due to the interaction between reproduction and limited resources. The population will converge
to its carrying capacity, K0. Increasing α beyond 3, a period-doubling cascade occurs, with the population
displaying periodic behaviour with cycles of period 2k, k ∈ N, begining at period 2 and increasing as α
increases. At α ≈ 3.57, the behaviour becomes aperiodic, although this is intermittent as windows of periodic
behaviour occur. In particular, an orbit of period 3 is evident for 3.828 . α . 3.842, thus chaos is present
in the dynamics (Li and Yorke, 1975). When α > 4, the population is no longer bounded below, and it thus
becomes rapidly extinct. This behaviour can be summarised in a bifurcation diagram (figure 2).
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Figure 2: Bifurcation diagram of equation (4), plotting Nn against α, for K0 = 1.

3.2 Discrete periodic carrying capacity

The dynamics resulting from the logistic map with constant carrying capacity are very well known (Thunberg,
2001), having been applied to a wide variety of phenomena as well as being very interesting from a purely
mathematical perspective (López-Ruiz and Fournier-Prunaret, 2004). The dynamics of various forms of cou-
pled logistic equations representing interspecies interactions in symbiosis models and predator-prey models
have also been investigated and applied (Hu et al., 2011; López-Ruiz and Fournier-Prunaret, 2004; Saha and
Sahni, 2012; Thunberg, 2001). However, these all consider the carrying capacity to be some fixed value. In
order to better replicate the natural environment, a time-dependent form of carrying capacity will now be
considered in a discrete model.

In (2), the carrying capacity was represented by a periodic function. It was observed that periodicity in the
environment forced population dynamics into periodic behaviour, with all solutions having the same period as
the carrying capacity. One way a periodic time-dependent function may be replicated in a discrete model is by
using the system

Nn+1 = αNn

(
1− (α− 1)

α
· Nn

Kn

)
Kn+1 = K0 + ε(−1)n,

(5)

where K0 is the average value of the carrying capacity, and ε determines the amplitude of the oscillations. As
for the continuous system, the carrying capacity has an influence on the population, but the population of the
species has no impact on its environment.

Iteration plots of system (5) are shown in figure 3, withK0 = 1,N0 = 0.5 and ε = 0.1 for two different values
of α. When α = 1.7, if the carrying capacity is constant then the population reaches a stable fixed point, as
in figure 2. However, in figure 3a, the periodic carrying capacity has caused the population to have cyclic
dynamics, with a 2-cycle evident. Hence variations in the environment are forcing changes in the population
dynamics. Variations in the population are delayed by one time step from the environment. This is because
the population dynamics, as determined by system (5), depend only on the value of Kn for the time-step. Any
increases or decreases in the population reflect conditions of the previous season. Increasing α to 2.8, which
would for a constant carrying capacity also mean eventually reaching a fixed point (figure 2), the population
has been forced into a 4-cycle. Hence we notice that a period-doubling bifurcation has occurred.

This behaviour can be represented in a bifurcation diagram (figure 4). It is clear that there is no 1-cycle, but the
periodic environment has forced periodic behaviour onto the population. Increasing α, the amplitude of the
2-cycle increases before a period-doubling bifurcation occurs, producing a 4-cycle. This behaviour continues
in a period-doubling cascade towards chaos. It can be seen that the range of physically meaningful values of
α has decreased from when the environment is unchanging. The regions of aperiodic behaviour are bounded
for α < 3.273, but increasing α beyond this critical point results in extinction. Intermittency between periodic
and aperiodic behaviour is also evident.
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Figure 3: Iteration plots of Nn against n, with (a) α = 1.7 and (b) α = 2.8.
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Figure 4: Bifurcation diagram of Nn against α, for K0 = 1, N0 = 0.5 and ε = 0.1.

Thus far only a constant value of ε = 0.1 has been considered. Figure 5 shows a bifurcation diagram for when
the amptlitude of the carrying capacity oscillations are increased to ε = 0.4. Clearly, the acceptable range of
α for species survival has been significantly reduced.

4 CONCLUSIONS AND FURTHER WORK

Discrete population models have advantages over their coninuous counterparts in various applications, and
have more interesting dynamics that can better represent some natural systems. A discrete function represent-
ing carrying capacity is proposed, and the population dynamics when used with the logistic map are explored.
Table 1 summarises the dynamics in comparison with a constant carrying capacity. It is observed that changing
the amplitude of the carrying capacity’s oscillations could have significant ramifications for management. If a
species with growth rate α = 2.5 is comfortably in equilibrium with its environment with periodic changes in
carrying capacity of 10% (ε = 0.1), increasing the oscillations to 40% (ε = 0.4) will cause the population to
become extinct extremely rapidly. Smaller changes that do not directly cause extinction will increase suscep-
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Figure 5: Bifurcation diagram of Nn against α, for K0 = 1, N0 = 0.5 and ε = 0.4.

Table 1: A summary of the onset of n-cycles for the logistic map, for a constant carrying capacity (equation
(4)) and a periodic carrying capacity (system (5)) with ε = 0.1 and ε = 0.4.

K = K0 K = K0 + ε(−1)n, K = K0 + ε(−1)n,
ε = 0.1 ε = 0.4

n-cycle onset at α ≈ onset at α ≈ onset at α ≈
1 1 none none
2 3 1 1
4 3.449 2.713 2
8 3.544 2.953 2.158
16 3.564 3.094 2.188
...

...
...

...
extinction 4 3.273 2.305

tibility to other changes in the environment. In such a situation, management must take care no such changes
occur that threaten survival of the species. The model will be tested against data from Jillson (1980), however
it is recognised that the logistic model is an oversimplification of reality. The consequences of using discrete
models as opposed to their continuous counterparts will be explored.
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