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Abstract: Tsunami modelling involves the problem of forecasting the effect that a tsunami has on a coastal
area, given the recordings of the water height at several buoys. This forecast has two consecutive steps: (1)
estimating the initial condition from the buoy data, and (2) propagating that initial condition to forecast the
effect on the coast. In order to be effective, the forecast should be completed within reasonable time. This is
challenging, as the first step involves solving a high-dimensional inverse problem, at significant computational
cost. Therefore, there is a need to search for methods that accelerate the solution of the inverse problem.

One approach is to reduce the number of dimensions of the inverse problem through parameter reduction.
This involves determining a reduced parameter basis, which enables us to approximate the model data to a
high level at accuracy while reducing the dimensionality of the inverse problem. This approach introduces
an ‘offline’ and an ‘online’ stage: during the offline stage, before a tsunami occurs, we allocate significant
computational cost to determining the reduced basis. As soon as a tsunami occurs and buoy data arrives, we
address the inverse problem, which is now lower-dimensional as a result of our efforts of determining the
reduced basis in the offline stage.
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Figure 1. Time evolution of a model tsunami problem, with a coast line on the right-hand side.

In this work, we consider the model tsunami problem illustrated in Figure 1, which shows how the water
height evolves over time, starting from an arbitrary initial condition. The initial condition is parameterised by
the input parameters p, which result in the buoy output y(p). We focus on finding a reduced basis, such that
the reduced model y(Qkp) is an accurate estimate of the full model y(p), with Qk an orthogonal projection
corresponding to the reduced basis. We use a greedy algorithm to approximate the optimal reduced basis.

We add a novel element to the greedy algorithm by quantifying how well the reduced model approximation
y(Qkp) can recover the full model y(p) for arbitrary p. Results for up to N = 25 input parameters show
that we can efficiently approximate the full model by using a reduced number of parameters. We find that the
relative amount of parameters that we need for an accurate approximation decreases when the number of input
parameters increases.
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1 INTRODUCTION

On March 11, 2011, the east coast of Japan was hit by a tsunami caused by an earthquake 70 kilometres
off shore, resulting in 20,000 people dead or missing. It is of great interest to understand this destructive
phenomenon, which requires reconstructing the source.

Waveforms of the tsunami were recorded by a number of observation systems in the region surrounding the
source, including ocean-bottom pressure gauges and GPS buoys. Determining the initial water height from this
data involves finding the solution to an inverse problem. This problem has been tackled using Time Reversal
Imaging techniques by Hossen et al. (2015), and with Least Squares Inversion by Saito et al. (2011). A similar
problem using Kalman filters has been addressed by Verlaan et al. (2005) and Heemink et al. (1997).

We seek to improve upon the least squares inversion method by posing the problem as a statistical inverse
problem, and to improve efficiency by applying reduced basis methods. We follow the method introduced in
Lieberman et al. (2010).

2 METHOD

2.1 Statistical inverse problem

Consider a parameterised model M : P ! Y of some phenomenon, where given a parameter value p in
the parameter space P � R

N , the model predicts y(p) in the output space Y � R
M , and we observe

noisy output yd 2 Y . The inverse problem is to estimate p given yd, a problem that is often ill-posed. In
the deterministic setting, regularisation and optimisation techniques are used to give a single point estimate
of the parameter. In contrast, a statistical formulation of the inverse problem returns a probability density
function over parameter space describing the relative likelihood of observation-consistent parameters, called
the ‘posterior distribution’, �(pjyd).
Here we infer properties of the probability distribution of model parameters p 2 R

N from observations
yd 2 Rm. We adopt a Bayesian approach where a prior probability density �(p) of p is given. We also assume
that our model of the observations provides us with a likelihood function �(yd j p) of the data yd. The data
yd is treated as a random vector Y with probability distribution �(y j p) and we denote the expectation as

y(p) := E(Y j p):

Bayes’ law leads to a formula for the posterior probability density of p as

�(p j yd) / �(p)�(yd j p): (1)

This probability density could then be further explored for example, in order to find marginals or moments of
the posterior or even the MAP (maximum a posteriori) estimate which is of the form

pMAP = argmax
p2RN

�(p j yd): (2)

In any case, the exploration of the posterior �(p j yd) requires its numerical evaluation typically many times.
In our case each evaluation of the likelihood (and thus the posterior) requires an expensive numerical simula-
tion.

2.2 Reduced basis method

In order to decrease the computational load required we reduce the parameter space from R
N to RNr as

any exploration or computation in a lower dimensional space is cheaper. For this we generate a sequence of
parameter vectors p1;p2; : : : in RN which are defined using a greedy algorithm as in Lieberman et al. (2010)

pk+1 = argmax
p2RN

�
1

2
ky(p)� y(Qkp)k2 + � log �(p)

�
; (3)

where the Qk : RN ! R
N are orthogonal projections with range(Qk) = spanfp1; : : : ;pkg for k � 1 and

Q0 := 0. This choice introduces the new pk+1 to make sure that a large number of observations yd can be
approximated in the range of Qk+1 while exploring parameter vectors which are sufficiently likely according
to the prior.

The main outcome of this paper is to show that this choice of pk gives good approximations for observations
yd generated by a tsunami model for relatively small Nr.
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3 TSUNAMI MODELLING APPLICATION

Given an initial water displacement, the wave propagation at subsequent times can be modelled with the shal-
low water wave equations. These are commonly expressed as a non-linear system of hyperbolic conservation
laws for mass and momentum (Roberts et al., 2015)
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Here g is the acceleration due to gravity, h is the water depth, u and v are the depth-averaged velocities in the
x1 and x2 (longitudinal and latitudinal) coordinates respectively, b is the ocean floor elevation and (Bx1 ; Bx2)
is the bed friction given by

Bx1 =
u�2

p
u2 + v2

h4=3
and Bx2 =

v�2
p
u2 + v2

h4=3

where � is the Manning friction coefficient. We conducted our experiments using the open source hydrody-
namic modelling software ANUGA, developed by the Australian National University (ANU) and Geoscience
Australia (GA), see for example Roberts et al. (2015); Nielsen et al. (2005). ANUGA solves the shallow water
wave equations using a finite-volume numerical scheme.

The computational domain is a 10 m �10 m square with reflective boundary conditions. The ocean floor has
constant Manning friction coefficient of � = 0:1 and a linearly sloping bathymetry representing a shoreline,
so that the unperturbed water depth is h = 1 m at x1 = 0 and h = 0 m at x1 = 8.

3.1 Model input

The initial sea surface displacement u0(x1; x2) is parameterised by a superposition of N Gaussian basis func-
tions given by

u0(x; y) =

NX
i=1

pi 
i(x1; x2) where 
i(x1; x2) = exp

�
�jx1 � �x1;ij2

2L2
� jx2 � �x2;ij2

2L2

�
:

The centres of the Gaussian basis functions are at uniformly spaced grid points (�x1;i; �y2;i) within the compu-
tational domain with corners at (x1; x2) = (3; 4); (3; 6); (5; 4) and (5; 6), as illustrated by the black dots in the
centres of Figures 1, 2 and 3. In order to investigate the effect of the number of input parameters, we have set
up the problem for different cases using N = 4; 6; 9; 15; 25. The input parameters p = (p1; p2; : : : ; pN ) are
the coefficients of the basis functions, while the kernel size L = 1.

3.2 Model output

The water flow is evolved using ANUGA for 5 seconds. A typical time evolution of the water height is
illustrated by Figure 1 (see extended abstract). Starting from the initial condition, a wave forms which hits the
beach after some 1 to 2 s, depending on the location.

The output y(p) is given by the time series data of water height extracted at six different points, representing
observation buoys, which are located at (x1; x2) = (0:5; 0:5), (0:5; 3:5), (0:5; 7:5), (7; 0), (7; 4) and (7; 7).
The locations of these buoys are illustrated by the red triangles in Figure 1, 2 and 3.

3.3 Outlook: inverse problem

Because the motivation for creating a reduced basis is solving the inverse problem to infer the probability
distribution of the input parameters �(pjyd) from the observed data yd, we provide a brief outlook.
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Figure 2. Geometry of the computational domain. The centres of the Gaussian basis functions are
represented by circles. The observation buoys are shown as red triangles, and the shoreline by the vertical line

at x = 8.

In the ideal case, the prior would be constructed by carefully analysing all historical tsunami data for the region
of interest. In those cases where such data is not available, one might choose a uniform prior. However, since
we assume some smoothness, we define the prior

p � N (0;S); (5)

with prior covariance matrix

Sij / exp

��jj�!x i ��!x j jj2
2b2

�

using smoothness coefficient b. We assume the likelihood

yd � N
�
y(p); �2I

�
; (6)

of observing the experimental data yd for a given input p, with � the measurement uncertainty. From the
prior (5) and the likelihood (6) we can compute the desired posterior (1).

4 RESULTS

In this section we investigate how well we are able to approximate the data y(p) by reduced models y(Qkp)
for the specific example described in the previous section and for 5 different initial conditions using N =
4; 6; 9; 15 and 25 parameters respectively. Here we assume that the parameter space is P = fp j kpk = 0:1g.

We define approximations to the parameter vectors pk defined in equation (3) by

pk+1 = arg max
p2Mk

1

2
ky(p)� y(Qkp)k2: (7)

where each Mk contains m independent samples of the uniform distribution over P and the the elements of
Mk and Mj are independent for j 6= k. In the experiment we chose m = 1000. Note that this allows us to
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Figure 3. Initial water height given by the four reduced basis vectors calculated for N = 4.

drop the � log �(p) term that appears in equation 3. We denote the approximations of pk by the same symbol
pk for simplicity.

Figure 3 illustrates the resulting basis vectors for N = 4 input parameters. Note that the first basis vector
results in a more global water height, while the second and third basis vectors provide more refinement. The
fourth basis vector only serves to complete the basis.

We are now interested in how well our reduced model approximation y(Qkp) can recover the full model y(p).
To get a qualitative impression of the accuracy of the approximation, Figure 4 shows the time series data y
at the different buoys. For an arbitrary initial condition, the red data is created using a full basis of N = 25
input parameters, while the blue data is created using a reduced basis of Nr = 13 parameters. The blue lines
provide a good approximation of the red lines for each of the buoys.

To quantify how well the reduced model approximation y(Qkp) can recover the full model y(p) for arbitrary
p, we use the relative L2 norm qR

P
jjy(p)� y(Qkp)jj2 d!qR

P
jjy(p)jj2 d!

;

where ! is a probability measure over P . We approximate this relative root mean squared error by Monte
Carlo quadrature as

�k =

q
1

m

P
p2Mk+1

jjy(p)� y(Qkp)jj2q
1

m

P
p2Mk+1

jjy(p)jj2
:

We now compute these �k for five examples with N = 4; 6; 9; 15; 25 respectively. The results are plotted in
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Figure 5. This figure shows that for more complex problems (higher N ) one requires more basis functions
to get the same error, but also that the relative number of basis functions required decreases, as is illustrated
in Figure 6. In the case of N = 25, a reduced model error below �k = 0:1 is achieved with Nr = 13 basis
vectors, a model reduction of 48%. The output buoy data for both the full and reduced models are shown in
Figure 4.
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Figure 4. Comparison of time series data from the six observation buoys for full model parameter dimension
N = 25. The full model data is shown in red and reduced model with Nk = 13 shown in blue. This reduced

basis has root mean square error �13 = 8:97� 10�2
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5 CONCLUSION

The results presented show that accurate shallow water wave data predictions can be made using a reduced
model method. This is promising for the solution of the inverse problem of recovering initial water heights
from data, as the search space for the optimisation problem (2) can be as much as halved.

Future work will further investigate the relative basis reduction for full parameter space dimension N , effi-
ciency gains and error sensitivity for solving the inverse problem using reduced basis methods, and extending
this analysis to a more realistic bathymetry.
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