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Abstract: Seabed hardness is an important character of seabed substrate as it may influence the nature of 
attachment of an organism to the seabed. Hence, spatially continuous predictions of seabed hardness are 
important baseline environmental information for sustainable management of Australia’s marine jurisdiction. 
Seabed hardness is usually inferred from multibeam backscatter data with unknown accuracy and can be 
inferred from underwater video footage or directly measured at limited locations. It can be predicted based on 
two-class hardness data derived from video footage and environmental predictors, but no study has been 
undertaken for predicting multiple-classes of hardness data.  

In this study, we classified the seabed hardness into four classes based on underwater video images that were 
extracted from the underwater video footage. We developed an optimal predictive model to predict the spatial 
distribution of seabed hardness using random forest (RF) based on the point data of the hardness classes and 
spatially continuous multibeam bathymetry, backscatter and other derived predictors. A novel model 
selection measure that is the averaged variable importance (AVI) was used based on predictive accuracy that 
was acquired from averaging the results of 100 times replication of 10-fold cross validation. Finally, the 
spatial predictions generated using the most accurate model were visually examined and analyzed in 
comparison with previously published predictions based on two-class hardness data.  

This study confirmed that:  
1) seabed hardness of four classes can be predicted into a spatially continuous layer with a high 
degree of accuracy (i.e., with a correct classification rate of 86.27%);  
2) model selection for RF is essential for identifying an optimal predictive model in environmental 
sciences and AVI selects the most accurate predictive model(s) instead of the most parsimonious 
ones, and is recommended for future studies;  
3) caution should be taken when using the correlation coefficient to select predictors for RF in 
marine environmental sciences;  
4) RF is an effective modelling method with high predictive accuracy for multi-level categorical 
data and can be applied to ‘small p and large n’ problems in the environmental sciences;  
5) the spatial predictions for four-class hardness data were similar with the predictions based on two 
hardness classes, with high match rates; and 
6) RF and AVI are recommended for generating spatially continuous predictions of categorical 
variables in future studies. 

In summary, this is the first attempt to predict the spatial distribution of seabed hardness of four classes. AVI 
shows its effectiveness in searching for the most accurate predictive models and is recommended for future 
studies. This study further confirms the superior performance of RF in marine environmental sciences. RF is 
an effective modelling method with high predictive accuracy not only for presence/absence data but also for 
multi-level categorical data. RF and AVI are recommended for generating spatially continuous predictions of 
categorical variables in future studies. 
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1. INTRODUCTION 

Seabed hardness is an important character of seabed substrate as it may influence the nature of attachment of 
an organism to the seabed. Hard substrates provide environments that generally support sessile suspension 
feeders, while soft (unconsolidated) substrates generally support discrete motile invertebrates (McArthur et 
al., 2010). Hence, a spatially continuous measurement of seabed hardness would be a significant aid in 
predicting the spatial distribution of benthic marine communities and thereby to marine ecosystem 
management. Despite its importance, seabed hardness data is difficult to acquire. It can be 1) directly 
measured at point locations, 2) inferred from underwater video footage at discrete locations over small areas 
(Stein et al., 1992), or 3) inferred from multibeam backscatter data (Kloser et al., 2010). However, there are 
disadvantages associated with these methods (Li et al., 2013). Therefore, predictive modelling provides an 
alternative approach to generate spatially continuous data of seabed hardness (Li et al., 2013), where seabed 
hardness was classified into two classes. Moreover, all mixed classes were classified into hard class (Li et al., 
2013), so the relevant information of hardness is missing for seabed with the mixed classes of hardness. 
However, there is no study on predicting seabed hardness based on four classes data. 

Random forest (RF), due to its proven predictive accuracy in data mining and many other disciplines (Cutler 
et al., 2007; Diaz-Uriarte and de Andres, 2006; Marmion et al., 2009) and in the marine environmental 
sciences (Li et al., 2011c; Li et al., 2010), was applied to predicting seabed hardness based on two classes (Li 
et al., 2013). Model selection is essential for identifying an optimal predictive model and various methods 
have been developed (Saeys et al., 2007). However, model selection was argued to be less important for RF, 
because: 1) RF selects the most important variable at each node split thus is insensitive to un-important 
variables (Okun and Priisalu, 2007); 2) it is of high predictive performance even when most predictive 
variables are noisy (Diaz-Uriarte and de Andres, 2006); and 3) if sample sizes are large (500 to 1000), its 
accuracy depends only on the number of strong features and not on the number of noisy variables (Biau, 
2012). It was found that excluding the correlated variables improved the predictive accuracy (Li et al., 2011a; 
Li et al., 2011b). In contrast, it was observed that including some correlated variables improved the predictive 
accuracy (Li, 2013b; Li et al., 2012a; Li et al., 2013). These findings demonstrate that model selection is 
necessary for selecting an optimal predictive model for RF.  

A model selection procedure was previously developed by Li et al. (2013) for RF based on the variable 
importance. In the environmental sciences, predictive variables are often correlated, which may affect the 
observed variable importance for the predictors when using RF. To deal with this, an R package 
‘extendedForest’ (Smith et al., 2011) was developed to compensate for the shortcomings in the existing RF 
package by Liaw and Wiener (2002). These studies provide fundamental tools for this study. 

In this study, we aim to select an optimal model to predict seabed hardness based on multi-level categorical 
hardness data and seabed biophysical variables. To achieve this, we also tested the effects of various 
predictor sets on the predictive accuracy of RF models. Finally, the most accurate model was used to 
generate a spatially continuous layer of seabed hardness and the predictions were visually examined and 
compared with the previously published predictions of hardness in two classes (Li et al., 2013).  

2. METHODS  

2.1. Study region and seabed hardness classification 

The study region is located in the eastern Joseph Bonaparte Gulf, northern Australian marine margin, with 
four areas (A - D) used in this study (Figure 1), which were surveyed in 2009 (Heap et al., 2010) and 2010 
(Anderson et al., 2011). Multibeam bathymetry and backscatter data and co-located underwater video data 
were acquired. The video footage was analyzed based on a 15-second window for each transect to classify 
seabed substrates and biological presence was used to assist the classification as detailed previously (Li et al., 
2013). The substratum composition was visually estimated to 5% precision (Mortensen and Buhl-Mortensen, 
2004) in terms of rock, boulders, cobble, rubble, gravel, sand and mud as defined by Wentworth (1922). 
Anything larger than gravel (i.e. rubble, cobbles, boulders and bedrock) was classified as ‘hard’ material, 
while mud, sand and gravel were classified as ‘soft’ material according to Stein et al. (1992). In total, 140 
samples of seabed hardness were considered in this study. On the basis of Stein et al. (1992), we classified 
the seabed substrate into four categories: hard, hard-soft, soft-hard and soft. If a substratum consisted of 
>70% hard material, it was classed as ‘hard’; if it consisted of ≤70% and >50 % hard material, it was classed 
as ‘hard-soft’; if it consisted of <50 % and ≥30% hard material, it was classed as ‘soft-hard’; and if it 
consisted of <30 % hard material, it was classed as ‘soft’. Substratum consisting of 50% ‘hard’ and 50% 
‘soft’ materials was not present in this study. Of the 140 samples, 9 samples were recorded as hard, 11 hard-
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soft, 6 soft-hard and 114 soft. The resultant datasets were used to 
predict seabed hardness, with hardness classes presented in Fig. 1.  

2.2. Predictive variables  

Following a preliminary analysis based on data availability and the 
relationships with seabed hardness as discussed above and in 
previous studies (Kloser et al., 2010; Siwabessy et al., 2013), 41 
predictive variables were initially collected at the locations of 
video transects. Since there were strong correlations among some 
predictive variables based on Spearman’s rank correlation (ρ), we 
removed 21 backscatter (bs) variables that were perfectly 
correlated with other variables or with a ρ=0.99. Thus 20 variables 
were retained and used in this study (Table 1). The bs25 should 
have been removed according to the above selection criteria, but 
was retained because it was used in a previous study (Li et al., 
2013). The Pearson’s correlation (r) was also derived for the 
remaining bs variables. Acquisition of these variables were 
detailed in previous studies (Li et al., 2013). All these variables 
were available at each grid cell to a 10 m resolution. 

2.3. Application of RF and model selection 

The R function, randomForest by Liaw and Wiener (2002), was 
used to develop a model to predict the spatial distribution of 
seabed hardness. The default values of mtry, ntree and nodesize 
were used for these parameters because they were often proven to 
be good options (Liaw and Wiener, 
2002) as was also evidenced in 
previous studies (Li et al., 2012b; 
Li et al., 2013). 

The model selection was based on 
a procedure developed for RF in 
previous studies (Li, 2013a, b; Li 
et al., 2013). To identify the most 
accurate predictive model, a cross-
validation function, rf.cv, was 
developed (Li et al., 2013). This 
function enabled us to remove the least 
important variables based on variable 
importance (VI) of predictive variables, and 
keep the predictors unchanged among 
iterations. It is a stepwise method using both 
forward and backward selection to add or 
eliminate predictors, and uses predictive 
accuracy to select each predictive variable. A 
novel model selection measure, averaged 
variable importance (AVI), was used to select 
predictors in this study. AVI was based on VI 
(Li et al., 2013) and an R package 
‘extendedForest’ (Smith et al., 2011). Due to 
the randomness associated with the 
importance of predictive variables generated 
by RF algorithm, the order of important 
variable(s) may change with individual 
iterations; meanwhile, correlated variables 
may also affect the reliability of VI; so we 
used the AVI method based on the 100 times 
replication to generate the average values of 

Table 1. Predictive variables and their corresponding number. 

No. Predictive variable No. Predictive variable 

1 easting 11 topographic position index (tpi)
2 northing 12 backscatter 13 o  (bs13)*
3 probability of hard substrate 13 bs21 
4 bathymetry (bathy) 14 bs25 
5 local Moran I of bathy 15 bs27 
6 planar curvature (planar.curv) 16 bs32 
7 profile curvature (profile.curv) 17 bs35 
8 topographic relief (relief) 18 homogeneity of bs (homogeneity)
9 seabed slope (slope) 19 variance of bs (variance)
10 surface area (surface) 20 local Moran I of bs (bs.moran)

* Backscatter normalized to 13o incidence angle. 

Figure 1. Location of the four study 
areas (A, B, C, and D) in the study 
region and seabed hardness classes 
(hard, hard-soft, soft-hard and soft) 

overlaid on bathymetry at video 
transect stations. 

Figure 2. AVI based on 100 iterations of RF using the 
extendedForest package. 
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VI (Figure 2) that were used to select the predictors. 

2.4. Model validation, comparison and spatial predictions 

To assess the predictive accuracy of each model, we used 10-fold cross-validation (Hastie et al., 2009). To 
deal with the random error associated with each 10-fold cross validation as observed in the previous studies 
(Li, 2013a, b; Li et al., 2013), we repeated the cross validation procedure 100 times. The final results were 
based on the average of 100 iterations of the 10-fold cross validation. The correct classification rate (ccr) and 
kappa were used to measure the predictive accuracy. 

The most accurate predictive model was used to predict seabed hardness at each 10m grid cell in the study 
areas. A portion of area A (A1) that comprises a variety of seabed geomorphic features was selected to 
illustrate and compare the predictions. 

All modelling work was implemented in R 2.15.2 
(R Development Core Team, 2012). Relevant 
maps were produced using ArcGIS (ESRI ® 
ArcMap TM 10.0). 

3. RESULTS  

3.1. Model selection using AVI 

Twenty five models were developed based on the 
AVI for 20 predictive variables (Table 2, Figure 
3). The first twenty models were developed by 
removing the least important variable based on 
AVI. Correct classification rates reached a local 
maximum for model 11. Two predictors (i.e. bs21 
and bathy.moran) were identified as important 
variables and some predictors were identified as 
unimportant variables (e.g. profile.curv, bs.moran 
and variance). After further adding the important 
variables (i.e. their exclusions resulted in a 
decrease in the predictive accuracy) to model 11 
and removing the unimportant predictors (i.e. 
their exclusions resulted in an increase in the 
predictive accuracy) from subsequent models, ccr 
increased and reached the highest mean value of 
86.27% for model 24. Kappa displayed a similar 
pattern as ccr and reached the highest mean value of 
0.4905 for model 24. Overall, model 24 with 10 
predictors was the most accurate model compared to 
other models. 

3.2. Comparison of spatial predictions 

The predictions for four hardness classes were 
similar with the predictions based on two classes (Li 
et al., 2013). Their match rate was 93.1% when the 
predictions of hard, hard-soft and soft-hard classes 
for four-class hardness data were pooled into one 
category (i.e. hard). The spatial predictions for four-
class hardness data in area A1 were similar with the 
predictions based on two hardness classes (Li et al., 
2013) (Figure 4), with a match rate of 88.9% when 
the predictions of hard, hard-soft and soft-hard for 
four-class hardness data were combined into a single 
category (i.e. hard). 

Table 2. A brief summary of RF modelling process 
based on AVI. The corresponding predictor for each 
number is listed in Table 1. 

Model Modelling process Predictors 

1 All 20 predictive variables All 20 variables 
2 model 1: -relief   1-7, 9-20 
3 model 2: -northing   1, 3-7, 9-20 
4 model 3: -bs13  1, 3-7, 9-11, 13-20 
5 model 4: -bs27   1, 3-7, 9-11, 13-14, 16-
6 model 5: -slope  1, 3, 4-7, 10-11, 13-
7 model 6: -bs25  1, 3-7, 10-11, 13, 16-20 
8 model 7: -bs21   1, 3-7, 10-11, 16-20 
9 model 8: -bathy.moran  1, 3-4, 6-7, 10-11, 16-20 
10 model 9: -surface   1, 3-4, 6-7, 11, 16-20 
11 model 10: -bathy 1, 3, 6-7, 11, 16-20 
12 model 11: -tpi   1, 3, 6-7, 16-20 
13 model 12: -bs35  1, 3, 6-7, 16, 18-20 
14 model 13: -variance   1, 3, 6-7, 16, 18, 20 
15 model 14: -bs.moran   1, 3, 6-7, 16, 18 
16 model 15: -bs32   1, 3, 6-7, 18 
17 model 16: -easting  3, 6-7, 18 
18 model 17: -profile.curv   3, 6, 18 
19 model 18: -homogeneity   3, 6 
20 model 19: -planar.curv   3 
21 model 11: +bs21 1, 3, 6-7, 11, 13, 16-20 
22 model 21: +bathy.moran 1, 3, 5-7, 11, 13, 16-20 
23 model 21: -profile.curv  1, 3, 6, 11, 13, 16-20 
24 model 21: -bs.moran   1, 3, 6-7, 11, 13, 16-19 
25 model 24: -variance  1, 3, 6, 7, 11, 13, 16-18 

 

Figure 3. ccr (%) and kappa (mean: black line; 
minimum and maximum: dash red lines) of 25 RF 

models based on the averages over 100 iterations of 
10-fold cross validation; and the model with the 

maximum mean ccr and mean kappa (circle). 
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4. DISCUSSION 

4.1. Predictive accuracy of four-class seabed 
hardness 

The predictive accuracy of the 25 models 
developed is high (Figure 3). The kappa of the 
most accurate model is 0.49 that is good 
according to Fielding & Bell (1997). The ccr of 
the most accurate models is even more notable. 
This demonstrates that the predictive accuracy of 
the model developed for predicting the seabed 
hardness is high. The high predictive accuracy 
suggests that: 1) seabed substrate was properly 
classified, and with high quality; 2) the predictors 
used were informative. Furthermore, the 
predictive accuracy for each model was 
stabilized and reliable because it is an averaged 
predictive accuracy based on 100 repetitions of 
10-fold cross-validation. Hence we can confirm 
that: 

• RF is an effective modelling method with 
high predictive accuracy for categorical 
data in multiple levels;  

• a robust predictive model was developed; 
• seabed hardness of four classes can be predicted with a high accuracy; and 
• RF can be applied to ‘small p and large n’ problems in environmental sciences, with a p as small as 

one, as also observed in the previous study (Li et al., 2013). 

The high accuracy of RF has been attributed to a number of features associated with RF as previously 
discussed (Li, 2013b; Li et al., 2011b; Li et al., 2011c). 

4.2. Predictive accuracy with correlated predictive variables and AVI 

The predictive accuracy of models developed for four-class hardness data changes with highly correlated 
predictors. The influence on the accuracy varies with individual predictors. The inclusion of highly correlated 
predictors (i.e. bs32 and bs35, with a ρ = 0.96 and r = 0.93; bs21 and bs35, with a ρ = 0.96 and r = 0.94) was 
observed to improve the predictive accuracy (i.e., model 24) in this study. This could be explained by the fact 
that these correlated predictors are informative as they have relatively high variable importance (Figure 2) 
and their inclusion can increase the number of informative predictors selected for each individual tree in RF, 
thus improving the predictive accuracy, which is consistent with the findings in previous studies (Li, 2013b; 
Li et al., 2012b; Li et al., 2013). This suggests that correlated variables may be able to compensate for the 
small number of proxy predictive variables in environmental sciences. In contrast, the exclusion of some 
highly correlated predictors can also improve the predictive accuracy. It was observed that bs27 and bs25 
were highly correlated with bs21 (ρ ≥ 0.98 and r = 0.99), and the exclusion of bs27 from model 4 and the 
exclusion of bs25 from model 6 resulted in slight improvement in predictive accuracy. Similar findings were 
also observed in previous studies (Li et al., 2011b; Li et al., 2012a). These opposite effects imply that not all 
highly correlated predictors should be used even if they are of high VI or excluded, and highlight the fact that 
there are no short-cuts in identifying the optimal predictive model. The extendedForest (Smith et al., 2011) 
package can efficiently deal with the correlated variables in terms of the variable importance, but how to 
select predictors that improve predictive accuracy from correlated predictive variables is still a challenging 
task. This finding suggests that caution should be taken when using correlation coefficient to select predictors 
for RF in marine environmental sciences. These applications further demonstrate that model selection is 
necessary for RF in marine environmental sciences (Li et al., 2011b; Li et al., 2012b). 

AVI has a couple of advantages over VI, AIC and BIC. AVI helps to produce a stable order of predictors and 
thus is preferable to VI (Li et al., 2013). AVI is based on the predictive accuracy and will select a model that 
is the most accurate or optimal instead of the most parsimonious as discussed above and in a previous study 
(Li et al., 2013). Traditional model selection methods such as AIC and BIC select the most parsimonious 
models that are not necessarily with most predictive accuracy. Since improving predictive accuracy is the 

 

Figure 4. Spatial predictions of seabed hardness for a 
section of area A (A1) in the Joseph Bonaparte Gulf: a) 
hardness with four classes (left), b) hardness with two 
classes (middle), and c) geomorphic. features (right). 
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ultimate goal of predictive modelling (Li et al., 2013), AVI is more appropriate for selecting predictive 
model(s). The principles underpinning the AVI can be easily applied to other machine learning methods as 
well as regression models. Therefore, it is recommended for selecting predictive model(s) in future studies. 

4.3. Hardness classification methods and prediction maps of seabed hardness 

The predictive accuracy of four hardness classes in this study was less than that of two classes in the previous 
study (Li et al., 2013; Siwabessy et al., 2013). A few factors were expected to negatively affect the predictive 
accuracy. These include that 1) divided hard class into three classes in this study was expected to reduce the 
accuracy; and 2) bathymetry was found to be no longer an important predictor in this study because 
bathymetry could no longer differentiate the classes derived from the previous hard class which is located at 
similar water depths. The spatial predictions for four-class hardness data were similar with the predictions 
based on two hardness classes (Li et al., 2013), with high match rates for all four areas and A1. These 
findings show that major patterns were captured in their predictions. 

The predicted maps reflect the influence of various geomorphic features such as banks, terraces, and valleys 
(Figures 4). The associations of the predicted seabed hardness with geomorphic features are similar to what 
have been discussed in previous studies (Li et al., 2013; Siwabessy et al., 2013). These associations were 
supported by ecological studies as certain organisms were expected to be found on hard (Anderson et al., 
2011; Przeslawski et al., 2011) and soft substratum (Anderson et al., 2011; Przeslawski et al., 2011) as 
observed in the corresponding substratum in this study. 

5. CONCLUSIONS 

This is the first attempt to predict the spatial distribution of seabed hardness to four classes. Seabed hardness 
of four classes is predictable and can be predicted into a spatially continuous layer with a high accuracy, 
especially for large areas where multibeam acoustic data exist and predictions of seabed classes are needed 
for marine planning and management. Model selection is essential for identifying an optimal predictive 
model for RF in environmental sciences. AVI demonstrates its effectiveness in searching for the most 
accurate predictive models and are recommended for future studies. This study further confirms the superior 
performance of RF in marine environmental sciences. RF is an effective modelling method with high 
predictive accuracy not only for presence/absence data and but also for multi-level categorical data. RF can 
be applied to ‘small p and large n’ problems in environmental sciences. RF and AVI are recommended for 
generating spatially continuous predictions of categorical variables in future studies. 
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